Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study identifies fat-secreted protein linked to insulin resistance

21.07.2005


Findings show new link between obesity and type 2 diabetes



A study led by researchers at Beth Israel Deaconess Medical Center (BIDMC) has shown that a protein found in fat cells is a newly discovered cause of insulin resistance, establishing a previously unidentified molecular link between obesity and type 2 diabetes and offering a potential new target for the development of drugs to treat diabetes. The findings appear in the July 21, 2005, issue of the journal Nature.

According to senior author Barbara B. Kahn, MD, Chief of the Division of Endocrinology, Diabetes, and Metabolism at BIDMC, these findings in both mice and humans represent the first evidence that elevated levels of retinol binding protein 4 (RBP4) play a key role in the development of insulin resistance, a primary risk factor for diabetes.


"Being resistant to insulin is one of the major causes of diabetes," says Kahn, who is also a Professor of Medicine at Harvard Medical School. "And even in the absence of diabetes, insulin resistance is a major risk factor for heart disease and early mortality."

Produced by the pancreas, the hormone insulin functions to help cells throughout the body take in glucose and convert the simple sugar to energy. In individuals who are resistant to insulin, the body’s muscle, fat and liver cells are unable to properly respond to the hormone, resulting in a build-up of glucose and insulin in the blood which, in turn, can lead to the development of diabetes and cardiovascular disease.

Earlier work in Kahn’s lab had focused on understanding the role of a glucose transporter protein called GLUT4 in the development of insulin resistance. Knowing that downregulation of GLUT4 expression in fat tissue is an almost universal feature of insulin-resistant states (including obesity, type 2 diabetes and the metabolic syndrome), previous members of Kahn’s lab developed two transgenic mouse models: One with fat-cell specific overexpression of GLUT4 and one with fat-cell specific reduction of GLUT4.

They found that the mice with overexpression of GLUT4 clearly demonstrated enhanced glucose tolerance and insulin sensitivity while, in contrast, the mice with reduced GLUT4 expression in fat tissue became insulin resistant and had an increased risk of developing diabetes.

"The results suggested that manipulating GLUT4 in adipose tissue affects whole body insulin sensitivity, very possibly through the secretion of proteins from fat cells," explains Kahn. "We therefore, measured the known fat-secreted molecules, including leptin, resistin and adiponectin, but found that in all cases, the levels were normal."

The study’s investigators, led by Qin Yang, MD, PhD, and Timothy Graham, MD, in Kahn’s lab, then conducted a global microarray analysis to identify a novel protein. "This led to our discovery of RBP4," says Kahn.

Further investigation found that both genetic and pharmacologic elevation of RBP4 can cause insulin resistance and that genetic and pharmacologic decrease of the protein in insulin-resistant states would ameliorate the condition. In humans with obesity or type 2 diabetes, the amount of excess RBP4 in the blood correlates with the severity of insulin resistance.

Until now, the sole function of RBP4 known to scientists was to deliver retinol (vitamin A) to tissues. With these new findings, it appears that this abundant transport (carrier) protein may have another function and that the metabolism of vitamin A or related compounds could possibly have some indirect impact on insulin action.

"There is a rapidly increasing epidemic of obesity and Type 2 diabetes in the Western world," says Kahn. "And, of particular concern, these conditions are becoming more common, not only in adults, but also in children and adolescents.

"It is, therefore, clear that more effective treatment strategies are needed to prevent and treat diabetes. RBP4 could prove to be a novel target for developing anti-diabetic therapies."

Bonnie Prescott | EurekAlert!
Further information:
http://www.bidmc.harvard.edu

More articles from Studies and Analyses:

nachricht Researchers simplify tiny structures' construction drip by drip
12.11.2018 | Princeton University, Engineering School

nachricht Mandibular movement monitoring may help improve oral sleep apnea devices
06.11.2018 | Elsevier

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

Im Focus: Nanorobots propel through the eye

Scientists developed specially coated nanometer-sized vehicles that can be actively moved through dense tissue like the vitreous of the eye. So far, the transport of nano-vehicles has only been demonstrated in model systems or biological fluids, but not in real tissue. The work was published in the journal Science Advances and constitutes one step further towards nanorobots becoming minimally-invasive tools for precisely delivering medicine to where it is needed.

Researchers of the “Micro, Nano and Molecular Systems” Lab at the Max Planck Institute for Intelligent Systems in Stuttgart, together with an international...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

In focus: Peptides, the “little brothers and sisters” of proteins

12.11.2018 | Life Sciences

Materials scientist creates fabric alternative to batteries for wearable devices

12.11.2018 | Materials Sciences

A two-atom quantum duet

12.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>