Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Predatory dinosaurs had bird-like pulmonary system

14.07.2005


What could the fierce dinosaur T. rex and a modern songbird such as the sparrow possibly have in common? Their pulmonary systems may have been more similar than scientists previously thought, according to new research from Ohio University and Harvard University.



Though some scientists have proposed that predatory dinosaurs had lungs similar to crocodiles and other reptiles, a new study published in this week’s issue of the journal Nature suggests the ancient beasts boasted a much bigger, more complex system of air sacs similar to that in today’s birds. The finding is one of several studies in recent years to paint a new, more avian-like portrait of meat-eaters such as T. rex: The creatures may have had feathers, incubated their eggs, grown quickly and perhaps even breathed like birds.

"What was once formally considered unique to birds was present in some form in the ancestors of birds," said Patrick O’Connor, an assistant professor of biomedical sciences at Ohio University’s College of Osteopathic Medicine and lead author on the study, which was funded in part by the National Science Foundation.


O’Connor and collaborator Leon Claessens of Harvard University visited museums in New York, Berkeley, Chicago, Pittsburgh, Washington, D.C., Berlin and London to examine the bones of ancient beasts, and also studied a 67-million-year-old dinosaur, Majungatholus atopus, that O’Connor had discovered in Madagascar as a graduate student in 1996. They compared the dinosaur skeletons with those of modern birds to draw comparisons of how the soft tissues in the dinosaurs may have been structured.

Birds long have fascinated biologists because of their unusual pulmonary system. Pulmonary air sacs prompt air to pass through the lungs twice during ventilation. This system also creates holes in the skeleton of birds, which has led to a popular notion that birds have "air in their bones," O’Connor said.

The new study, which examined how the air system invades the skeleton in areas such as the neck, chest and hips, finds similarities between the vertebral column of dinosaurs and birds that point to a common soft tissue system as the culprit. Though probably not identical to living birds, "it’s nothing like the crocodile system as we know it," O’Connor said.

"The pulmonary system of meat-eating dinosaurs such as T. rex in fact shares many structural similarities with that of modern birds, which, from an engineering point of view, may possess the most efficient respiratory system of any living vertebrate inhabiting the land or sky," said Claessens, who received a Ph.D. from Harvard in organismic and evolutionary biology last month and will join the faculty at the College of the Holy Cross in Worcester, Mass., this fall.

In birds, this special anatomical configuration increases the gas exchange potential within the lungs, boosting metabolism and creating warm-bloodedness. The researchers are quick to point out, however, that the new study doesn’t clearly peg predatory dinosaurs as habitually warm-blooded animals. The creatures probably had a more complex strategy, falling somewhere between what scientists define as cold- and warm-blooded. It appears that these animals had the pulmonary machinery for enhanced gas exchange, O’Connor explained, which would have pushed them closer to being warm-blooded creatures.

Previous research that pointed to a more crocodilian-like pulmonary system was based on a study of two dinosaur skeletons encased in rock. O’Connor and Claessens have expanded on that research by studying a broader collection of dinosaur skeletal remains, and are the first to integrate both anatomical and functional studies of modern birds as models of how the ancient creatures’ air sacs were structured.

The scientists are part of a reinvigorated movement of researchers who are examining dinosaur bones and comparing them with modern animals to learn more about the anatomy of these extinct beasts.

Andrea Gibson | EurekAlert!
Further information:
http://www.ohio.edu

More articles from Studies and Analyses:

nachricht Study relating to materials testing Detecting damages in non-magnetic steel through magnetism
23.07.2018 | Technische Universität Kaiserslautern

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>