Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Cornell study suggests that mental processing is continuous, not like a computer

28.06.2005


The theory that the mind works like a computer, in a series of distinct stages, was an important steppingstone in cognitive science, but it has outlived its usefulness, concludes a new Cornell University study. Instead, the mind should be thought of more as working the way biological organisms do: as a dynamic continuum, cascading through shades of grey.



In a new study published online this week in Proceedings of the National Academy of Sciences (June 27-July 1), Michael Spivey, a psycholinguist and associate professor of psychology at Cornell, tracked the mouse movements of undergraduate students while working at a computer. The findings provide compelling evidence that language comprehension is a continuous process.

"For decades, the cognitive and neural sciences have treated mental processes as though they involved passing discrete packets of information in a strictly feed-forward fashion from one cognitive module to the next or in a string of individuated binary symbols -- like a digital computer," said Spivey. "More recently, however, a growing number of studies, such as ours, support dynamical-systems approaches to the mind. In this model, perception and cognition are mathematically described as a continuous trajectory through a high-dimensional mental space; the neural activation patterns flow back and forth to produce nonlinear, self-organized, emergent properties -- like a biological organism."


In his study, 42 students listened to instructions to click on pictures of different objects on a computer screen. When the students heard a word, such as "candle," and were presented with two pictures whose names did not sound alike, such as a candle and a jacket, the trajectories of their mouse movements were quite straight and directly to the candle. But when the students heard "candle" and were presented with two pictures with similarly sounding names, such as candle and candy, they were slower to click on the correct object, and their mouse trajectories were much more curved. Spivey said that the listeners started processing what they heard even before the entire word was spoken.

"When there was ambiguity, the participants briefly didn’t know which picture was correct and so for several dozen milliseconds, they were in multiple states at once. They didn’t move all the way to one picture and then correct their movement if they realized they were wrong, but instead they traveled through an intermediate gray area," explained Spivey. "The degree of curvature of the trajectory shows how much the other object is competing for their interpretation; the curve shows continuous competition. They sort of partially heard the word both ways, and their resolution of the ambiguity was gradual rather than discrete; it’s a dynamical system."

The computer metaphor describes cognition as being in a particular discrete state, for example, "on or off" or in values of either zero or one, and in a static state until moving on. If there was ambiguity, the model assumed that the mind jumps the gun to one state or the other, and if it realizes it is wrong, it then makes a correction.

"In thinking of cognition as working as a biological organism does, on the other hand, you do not have to be in one state or another like a computer, but can have values in between -- you can be partially in one state and another, and then eventually gravitate to a unique interpretation, as in finally recognizing a spoken word," Spivey said.

Whereas the older models of language processing theorized that neural systems process words in a series of discrete stages, the alternative model suggests that sensory input is processed continuously so that even partial linguistic input can start "the dynamic competition between simultaneously active representations."

Spivey’s co-authors are Marc Grosjean of the University of Dortmund, Germany, and Günther Knoblich of Rutgers University.

Press Relations Office | EurekAlert!
Further information:
http://www.cornell.edu

More articles from Studies and Analyses:

nachricht Researchers simplify tiny structures' construction drip by drip
12.11.2018 | Princeton University, Engineering School

nachricht Mandibular movement monitoring may help improve oral sleep apnea devices
06.11.2018 | Elsevier

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>