Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enzyme family plays role in Alzheimer’s

21.06.2005


The route to a treatment for Alzheimer’s disease may have become more straightforward with the discovery that a key enzyme known to have a major role in this disease is in fact part of a family of enzymes. Only some family members play a role in the progression of this brain-wasting illness, new research at the University of Toronto has found.



"It was previously thought that an enzyme called gamma-secretase contributed to the development of protein deposits in the Alzheimer’s brain. This study shows that this enzyme is more accurately described as a family of enzymes, each with its own specialization," explains Professor David Westaway of U of T’s Centre for Research in Neurodegenerative Diseases and senior author of a paper in the June 21 issue of the Proceedings of the National Academy of Sciences.

Gamma-secretase enzymes generate toxic molecules called amyloid-beta peptides. These peptides produce deposits called amyloid plaques, the brain lesions that are a defining feature of Alzheimer’s disease. If scientists can stop these enzymes from working, they will be able to stop their resulting toxic molecules from forming in the brain. Complicating the situation is the fact that the gamma-secretase enzyme was also thought to be involved in healthy functioning of other tissues; therefore, therapies would have to inhibit the negative effects while maintaining the normal functioning of other cells.


Westaway and his research colleagues used genetically-engineered mice to show that toxic activity of gamma-secretase could be separated from its other benign activities. "This finding provides hope that Alzheimer’s treatments can be developed that reduces toxic activity of certain gamma-secretases while still maintaining the beneficial activities of other family members," says Peter Mastrangelo, a research associate in Westaway’s lab and first author of the paper.

Janet Wong | EurekAlert!
Further information:
http://www.utoronto.ca

More articles from Studies and Analyses:

nachricht Antarctic Ice Sheet mass loss has increased
14.06.2018 | Technische Universität Dresden

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>