Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study spells out new evidence for roots of dyslexia

31.05.2005


Addressing a persistent debate in the field of dyslexia research, scientists at the University of Wisconsin-Madison and the University of Southern California (USC) have disproved the popular theory that deficits in certain visual processes cause the spelling and reading woes commonly suffered by dyslexics.



Rather, a more general problem in basic sensory perception may be at the root of the learning disorder, the scientists report today (May 29, 2005) in the journal Nature Neuroscience. The work suggests new ways to identify dyslexics and to assess the many unevaluated techniques teachers use to help dyslexics in the classroom.

Misfiring neurons perhaps make it difficult for dyslexics to pick out relevant visual and auditory cues from the expanse of surrounding sounds and patterns, or "noise"; it is this inability that may bear heavily on how easily a child can read, says lead author Anne Sperling, who conducted the research as a USC graduate student, alongside co-author Mark Seidenberg, a UW-Madison psychology professor who left USC in 2001.


"We really want to understand what is going on at the neurological level that’s leading to reading problems," says Sperling. "[We think] that if a child has a hard time ignoring ’noise,’ it could distort speech perception and complicate [the recognition] of sound segments, which is essential for learning how to read."

A learning disorder with neurological underpinnings, dyslexia affects between 5 to 10 percent of children in the U.S. Sperling calls the condition a "spiraling problem" because poor reading interferes with many types of learning.

Researchers first proposed during the 1920s that dyslexic children sometimes spell words backwards because they have trouble seeing straight. Five decades later, that idea out of favor as researchers increasingly believed that dyslexic reading problems are directly linked to the inability to blend phonemes, or the component sounds in any word.

A child needs to understand that spoken words consists of such sounds--that "bat" for example, includes three sounds ("buh," "aah" and "tuh") while the word "splat" has five. The knowledge makes it easier to learn how to pronounce letters, explains Seidenberg.

"For some reason [dyslexic children] are not developing knowledge of phonemes," says Seidenberg. "This has little impact on their spoken language, but really interferes with learning to read."

Scientists have long tried to understand why dyslexics stumble with phonemes. With recent advances in the understanding of the brain and visual processes, dyslexia researchers again turned in the 1990s to vision as the likely root of the learning disorder. In particular they focused on the magnocellular (M) pathway, one of two visual pathways in the brain that processes motion and brightness. The other visual channel, the parvocellular (P) pathway, processes detail and color.

Some studies implicated an impaired M channel, showing that dyslexic children have trouble seeing rapidly changing or moving stimuli. But the findings have not been readily replicated and there was little consensus among experts, says Sperling. "We wanted to know decisively once and for all whether it is the M pathway or not," she says.

Devising a new approach, Sperling gathered 28 dyslexic and 27 non-dyslexic children, and showed them a pattern on a computer screen showing alternating light and dark bars. One type of pattern, with thick, rapidly flickering bars, targeted study participants’ M pathways. The other type of pattern, with thinner non-flickering bars activated participants’ P pathways. The patterns appeared either on the left or right side of the screen, and the children’s task was to indicate which side they saw them.

When only the patterns appeared, the dyslexic children were as able as their peers to pick out both the M and P displays. But when Sperling partially obscured the patterns with patches of "noise," or television static-like bright and dark spots, the dyslexic children struggled to isolate both M and P patterns.

The work confirms that problems with "ignoring noise" play a more central role in the onset of dyslexia than the M and P pathways, Sperling says. An immediate classroom application, she suggests, could be for teachers to "accentuate differences between sounds, showing the extremes to help [dyslexic children] build categories."

Future studies should examine additional sensory systems, Seidenberg adds, to see if the noise idea holds for all senses and to seek connections between auditory and visual processes in dyslexia.

Anne Sperling | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Studies and Analyses:

nachricht Study relating to materials testing Detecting damages in non-magnetic steel through magnetism
23.07.2018 | Technische Universität Kaiserslautern

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>