Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penn Study Shows Liver Receptor Key To Diet-Dependent Differences in Blood Lipid Levels

13.05.2005


Receptor Can, When Overly Abundant, Adjust for the Consequences of a High-Fat Diet

Researchers at the University of Pennsylvania School of Medicine have discovered that a molecule found in liver cells is an important link in explaining the relationship among diet, lipid levels in blood, and atherosclerosis. The research team surmises that drugs targeted at the liver may one day help lower elevated lipids and battle cardiovascular disease. Mitchell Lazar, MD, PhD, Director of the Institute for Diabetes, Obesity, and Metabolism at Penn, and colleagues report their findings in the May 2005 issue of Cell Metabolism.
The high-cholesterol, high-fat so-called “Western diet” has accelerated an epidemic of atherosclerotic cardiovascular disease, the leading cause of death in industrialized nations. And, understanding interactions between genes and the reality of what most people eat are increasingly recognized as critical for effective treatment.


Molecules found in the nucleus of liver cells called LXRs (for Liver X Receptors) have emerged in the last few years as crucial regulators of cholesterol and lipid metabolism. (Click on thumbnail to view full-size image). “The conventional wisdom–borne out of drug-development studies done before this paper–was that LXRs are good in terms of decreasing atherosclerosis and bad in terms of increased triglycerides,” explains Lazar. Indeed, although LXR-based experimental drugs, which dramatically increase LXR activity throughout the body, reduce cholesterol levels in the blood, they also lead to high levels of triglycerides.

Surmising that a targeted approach might work better, the researchers used transgenic mice engineered to have an excess of LXR in their liver only, which gave the mice high levels of cholesterol and an increased risk of heart disease. They found that LXR, which senses fat in the liver, could adjust the consequences of eating a high-fat Western diet.

The team found that the increased liver LXR worsened levels of cholesterol and triglycerides in mice fed a normal, low-fat diet. However, surprisingly, when the same transgenic mice with increased LXR were fed a high-fat/high-cholesterol diet, similar in composition to a standard Western diet, their blood cholesterol and triglyceride levels actually improved. Furthermore, the mice were protected from the atherosclerotic cardiovascular disease that normally results from this diet. However, the beneficial effect of the increased LXR levels was lost when mice were treated with the experimental drug.

The researchers concluded that increased expression of LXR in the liver is beneficial in a body full of natural molecules that bind to the LXR receptor, which are generated by the Western diet, but not when on a low-fat, healthy diet. However, this benefit is lost when a potent drug is added to the system. “The reason is that a different set of target genes is turned on by this synthetic molecule, as opposed to the natural molecule,” says Lazar. “We’re saying, maybe what we need are drugs that mimic the natural ligand rather than a sledgehammer like the potent pharmaceutical drugs that too powerfully activate LXRs throughout the body.” The hope is that these will decrease cholesterol without increasing triglycerides.

One of the main questions facing the study of complex metabolic diseases is, if two people eat a high-fat diet, why does one person’s cholesterol go up but the other’s does not. “If we find natural variations in people in the amount of LXR in their livers, this may help explain this conundrum of the difference in susceptibility to high cholesterol and heart disease, depending on diet,” says Lazar. “The answer is genetics. Our work suggests that one of the new genetic factors to pay attention to is the amount of LXR in the liver.”

The study was funded in part by the National Institutes of Health and a Bristol Myers Squibb Freedom to Discover Award in Metabolic Research. Study co-authors are Michael Lehrke, Corinna Lebherz, Segan Millington, Hong-Ping Guan, John Millar, Daniel J. Rader, and James M. Wilson, all from Penn.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Studies and Analyses:

nachricht Study relating to materials testing Detecting damages in non-magnetic steel through magnetism
23.07.2018 | Technische Universität Kaiserslautern

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>