Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study is first to implicate dietary fat in ’fatty liver’

03.05.2005


A University of Minnesota study is the first to show that if you eat too much fat, it can go straight to your liver and damage it.



In obese people with nonalcoholic fatty liver disease (NAFLD), fat from the diet ends up "stuck" in the liver, where it doesn’t belong. It was known that the livers of NAFLD patients accumulated fat, but its origin was unknown. The new work implicates fat from the diet as one cause of NAFLD and shows that fat buildup in the liver results when the liver loses its ability to manage the various influxes of fat that occur during transitions between the fasted and fed states. Identifying the origins of accumulated fat in the livers of NAFLD patients will be important in preventing and reversing this condition, which can lead to more serious liver trouble. The work will be published May 2 in the Journal of Clinical Investigation.

"This is the first scientific proof of dietary fat stored in the liver in humans," said Elizabeth Parks, an associate professor of human nutrition, who led the study. "In health, it’s the liver’s job to store glycogen--a storage form of carbohydrates--not fat." The clear implication is that too much dietary fat leads the liver to fail in its mission as the body’s central shipping and receiving center for fat. No longer does it take in dietary fat, repackage it and send it on its way back out into the blood. In obesity, fat builds up in the liver. The fat comes both straight from the diet and also from sugars that the liver turns into fat. As a result, the liver functions poorly.


In healthy people, about half the fat from a meal is burned for energy, and the rest is shunted to adipose tissue, where it is stored until needed during fasting. Very little fat is normally stored in the liver.

Working with obese subjects who had NAFLD, Parks and her colleagues fed the subjects food containing fats labeled with deuterium, a rare but stable form of hydrogen that can be used to trace fats as they move through the body. The subjects were already scheduled for liver biopsies, and Parks’ team gave the patients labeled fat for five days before their biopsy. The researchers analyzed the waste liver tissue from the biopsies and found that these patients’ livers had globules of fat--about 20 percent of it from the diet. Furthermore, the liver’s synthesis of fat from dietary carbohydrates was also elevated.

Once thought benign, fatty liver is now considered a component of a condition called metabolic syndrome, which occurs most often in overweight people and whose features include insulin resistance and cholesterol abnormalities. Fatty liver is also a precursor to the more advanced liver disease nonalcoholic steatohepatitis, which may progress to cirrhosis of the liver in up to 25 percent of patients, said Parks.

"The bottom line is, this is a clear implication that if one eats too much fat, as in the film ’Super Size Me,’ fat becomes deposited in the liver. This leads to a kind of liver toxicity that would be good to avoid," said Parks.

Deane Morrison | EurekAlert!
Further information:
http://www.umn.edu

More articles from Studies and Analyses:

nachricht Study relating to materials testing Detecting damages in non-magnetic steel through magnetism
23.07.2018 | Technische Universität Kaiserslautern

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>