Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds moderate hypothermia a safe treatment for traumatic brain injury in kids

27.04.2005


Multi-center trial shows positive results for pediatric head injury cooling treatment



A first-of-its-kind multi-center trial has shown that cooling the body can have positive affects on children who suffered traumatic brain injury. The study’s lead investigator, Children’s Hospital of Pittsburgh neurosurgeon P. David Adelson, MD, and fellow researchers determined that induced moderate hypothermia initiated after severe traumatic brain injury (TBI) is a safe therapeutic intervention for children.

TBI initiates several metabolic processes that can exacerbate the injury. Adult research has produced evidence that hypothermia may limit some of these deleterious metabolic responses.


The trial, which is the only multi-center clinical trial involving children underway in the United States, was conducted to determine whether moderate hypothermia (32–33 degrees Celsius) begun in the early period after severe TBI and maintained for 48 hours is safe compared with normal body temperature (36.5–37.5 degrees Celsius). By inducing hypothermia in pediatric patients down to 32 degrees Celsius, doctors found that hypothermia tended to reduce mortality, lower the severity of intracranial hypertension during the cooling phase and has the potential to improve the functional outcome of young patients. Therefore, it was determined that hypothermia is likely a safe therapeutic intervention for children after severe TBI up to 24 hours after injury

Study results are published in the April issue of the journal, Neurosurgery. A total of 75 patients were involved in the trial, which was funded by the National Institutes of Health. "Traumatic brain injury causes more children’s deaths in this country than all other causes of death combined," said Dr. Adelson, who is the director of the Pediatric Neurotrauma Center at Children’s Hospital of Pittsburgh. "There is no one thing that can effectively treat all cases of traumatic brain injury, but our hope is that with the cooling from hypothermia, we may block or slow down the brain’s deleterious biochemical mechanisms following an injury and also be able to develop other more effective treatments."

Lowering body temperature can help control brain swelling and intracranial pressure, which can also exacerbate secondary injury if left unchecked. Induced hypothermia can be accomplished using several methods. Surface cooling methods such as cooling blankets placed under and on top of patients and ice packs placed in the groin and armpit areas are effective in decreasing temperature.

In addition to safety, mortality and complications during the treatment protocol and during hospitalization, the study also assessed functional and cognitive outcome in these children with severe traumatic brain injury. After severe TBI, 48 children less than 13 years of age admitted within six hours of injury were randomized by age to moderate hypothermia treatment in conjunction with standardized head injury management versus normal body temperature.

An additional 27 patients were entered into a parallel trial of those patients who were excluded because there was a delay in transfer of greater than six hours following injury but within 24 hours of admission, or unknown time when the injury occurred (i.e. child abuse) or were an adolescent (13–18 years old).

Assessments of safety included mortality, infection, coagulopathy (blood clotting), arrhythmias and hemorrhage as well as ability to maintain target temperature, mean intracranial pressure (ICP), and percent time of ICP less than 20 mm Hg during the cooling and subsequent rewarming phases. Additionally, assessments of neurocognitive outcomes were obtained at three and six months of follow-up. Researchers will conduct further studies to determine the effect of moderate hypothermia on functional outcome and intracranial hypertension.

Melanie Finnigan | EurekAlert!
Further information:
http://www.chp.edu

More articles from Studies and Analyses:

nachricht Study relating to materials testing Detecting damages in non-magnetic steel through magnetism
23.07.2018 | Technische Universität Kaiserslautern

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>