Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds possible mechanism for link between sleep disturbances and metabolic syndrome

22.04.2005


A new mouse study suggests that a brain system that controls the sleep/wake cycle might also play a role in regulating appetite and metabolism. Mice with a mutation in a gene called "Clock," which helps drive circadian rhythm, ate significantly more and gained more weight. The finding could help explain why disrupted sleep patterns-particularly when combined with a high-fat diet--are associated with excessive weight gain and the onset of metabolic syndrome in some people, according to investigators supported by the National Institutes of Health (NIH).



The study, by Fred W. Turek, Ph.D., and Joseph Bass, M.D., Ph.D., of Northwestern University in Evanston, Ill., and others will be available at the Science Express website, http://www.sciencemag.org/sciencexpress/recent.shtml, on April 21, 2005.

The National Institute on Aging (NIA), the National Heart, Lung and Blood Institute (NHLBI), and the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) supported this work. The NIA, NHLBI and NIDDK are components of the NIH at the U.S. Department of Health and Human Services.


At least 40 million Americans have chronic sleep problems, and an additional 20 million experience occasional sleeping problems. As many as 47 million Americans have metabolic syndrome, a cluster of conditions shown to increase a person’s risk of heart disease and stroke. The National Cholesterol Education Program defines metabolic syndrome as having at least 3 of the following risk factors: high blood pressure, high glucose (sugar) levels which can indicate risk for diabetes, high triglyceride levels, low levels of good cholesterol, and a large waist.

Scientists have found that circadian rhythms (which control the sleep/wake cycle and other biological processes), hunger, and satiety are all regulated by centers within a brain structure called the hypothalamus. And previous studies in humans have suggested that disrupted sleep patterns may contribute to the development of obesity, diabetes, and metabolic syndrome.

In this latest work, Turek and his colleagues found that mutant mice were more active during times when rodents usually sleep. They also had less fluctuation in blood levels of leptin, a hormone that transmits a satiety signal to the brain. The researchers also found that Clock mutant mice had reduced levels of the hormone ghrelin within the hypothalamus, indicting that ghrelin may participate in the neuronal relay linking sleep, wakefulness, and appetite. Together, these alterations in neural and peripheral hormones suggest that a number of previously undetected brain circuits may exist that are common to sleep and eating.

The mice with a mutation in the Clock gene fed a regular diet gained about as much weight as normal mice that were fed a high-fat diet. The mice with a mutation in the Clock gene showed even greater weight gain and changes in metabolism when fed a high-fat diet. They developed a wide range of conditions associated with obesity, diabetes, and the metabolic syndrome, such as high levels of blood cholesterol, triglycerides, and glucose, and insulin resistance.

Andrew Monjan, Ph.D., of the NIA and Carl E. Hunt, M.D., director of the NIH National Center on Sleep Disorders Research, are available to discuss this study. To arrange an interview with Dr. Monjan, phone (301) 496-1752; for Dr. Hunt, phone (301) 496-4236.

NIA, NHLBI, and NIDDK are part of the National Institutes of Health (NIH), the Federal Government’s primary agency for biomedical and behavioral research. NIH is a component of the U.S. Department of Health and Human Services. NIA information on conditions and diseases associated with aging is available at www.nia.nih.gov. NHLBI press releases and fact sheets, including information on obesity and sleep disorders can be found online at www.nhlbi.nih.gov. NIDDK information on weight control and nutrition can be found online at www.niddk.nih.gov.

NHLBI Communications Office | EurekAlert!
Further information:
http://www.nhlbi.nih.gov
http://www.nia.nih.gov
http://www.niddk.nih.gov

More articles from Studies and Analyses:

nachricht Researchers simplify tiny structures' construction drip by drip
12.11.2018 | Princeton University, Engineering School

nachricht Mandibular movement monitoring may help improve oral sleep apnea devices
06.11.2018 | Elsevier

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First diode for magnetic fields

Innsbruck quantum physicists have constructed a diode for magnetic fields and then tested it in the laboratory. The device, developed by the research groups led by the theorist Oriol Romero-Isart and the experimental physicist Gerhard Kirchmair, could open up a number of new applications.

Electric diodes are essential electronic components that conduct electricity in one direction but prevent conduction in the opposite one. They are found at the...

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Removing toxic mercury from contaminated water

21.11.2018 | Life Sciences

New China and US studies back use of pulse oximeters for assessing blood pressure

21.11.2018 | Medical Engineering

Exoplanet stepping stones

21.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>