Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds possible mechanism for link between sleep disturbances and metabolic syndrome

22.04.2005


A new mouse study suggests that a brain system that controls the sleep/wake cycle might also play a role in regulating appetite and metabolism. Mice with a mutation in a gene called "Clock," which helps drive circadian rhythm, ate significantly more and gained more weight. The finding could help explain why disrupted sleep patterns-particularly when combined with a high-fat diet--are associated with excessive weight gain and the onset of metabolic syndrome in some people, according to investigators supported by the National Institutes of Health (NIH).



The study, by Fred W. Turek, Ph.D., and Joseph Bass, M.D., Ph.D., of Northwestern University in Evanston, Ill., and others will be available at the Science Express website, http://www.sciencemag.org/sciencexpress/recent.shtml, on April 21, 2005.

The National Institute on Aging (NIA), the National Heart, Lung and Blood Institute (NHLBI), and the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) supported this work. The NIA, NHLBI and NIDDK are components of the NIH at the U.S. Department of Health and Human Services.


At least 40 million Americans have chronic sleep problems, and an additional 20 million experience occasional sleeping problems. As many as 47 million Americans have metabolic syndrome, a cluster of conditions shown to increase a person’s risk of heart disease and stroke. The National Cholesterol Education Program defines metabolic syndrome as having at least 3 of the following risk factors: high blood pressure, high glucose (sugar) levels which can indicate risk for diabetes, high triglyceride levels, low levels of good cholesterol, and a large waist.

Scientists have found that circadian rhythms (which control the sleep/wake cycle and other biological processes), hunger, and satiety are all regulated by centers within a brain structure called the hypothalamus. And previous studies in humans have suggested that disrupted sleep patterns may contribute to the development of obesity, diabetes, and metabolic syndrome.

In this latest work, Turek and his colleagues found that mutant mice were more active during times when rodents usually sleep. They also had less fluctuation in blood levels of leptin, a hormone that transmits a satiety signal to the brain. The researchers also found that Clock mutant mice had reduced levels of the hormone ghrelin within the hypothalamus, indicting that ghrelin may participate in the neuronal relay linking sleep, wakefulness, and appetite. Together, these alterations in neural and peripheral hormones suggest that a number of previously undetected brain circuits may exist that are common to sleep and eating.

The mice with a mutation in the Clock gene fed a regular diet gained about as much weight as normal mice that were fed a high-fat diet. The mice with a mutation in the Clock gene showed even greater weight gain and changes in metabolism when fed a high-fat diet. They developed a wide range of conditions associated with obesity, diabetes, and the metabolic syndrome, such as high levels of blood cholesterol, triglycerides, and glucose, and insulin resistance.

Andrew Monjan, Ph.D., of the NIA and Carl E. Hunt, M.D., director of the NIH National Center on Sleep Disorders Research, are available to discuss this study. To arrange an interview with Dr. Monjan, phone (301) 496-1752; for Dr. Hunt, phone (301) 496-4236.

NIA, NHLBI, and NIDDK are part of the National Institutes of Health (NIH), the Federal Government’s primary agency for biomedical and behavioral research. NIH is a component of the U.S. Department of Health and Human Services. NIA information on conditions and diseases associated with aging is available at www.nia.nih.gov. NHLBI press releases and fact sheets, including information on obesity and sleep disorders can be found online at www.nhlbi.nih.gov. NIDDK information on weight control and nutrition can be found online at www.niddk.nih.gov.

NHLBI Communications Office | EurekAlert!
Further information:
http://www.nhlbi.nih.gov
http://www.nia.nih.gov
http://www.niddk.nih.gov

More articles from Studies and Analyses:

nachricht Antarctic Ice Sheet mass loss has increased
14.06.2018 | Technische Universität Dresden

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>