Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research pinpoints best treatment for stroke

20.04.2005


Results suggest CT perfusion improves outcomes



Interventional neuroradiologists at West Virginia University School of Medicine and Hospitals today presented the largest study to date on the utility of computed tomography (CT) perfusion imaging of the brain in determining and predicting stroke outcomes. Results will help better identify patients who are suitable candidates for treatment utilizing either clot busting medicines or clot retrieval devices. The research was presented to leading neurosurgeons at the 73rd annual meeting of the American Association of Neurological Surgeons.

The research, which examined 705 stroke patients, is significant because it allows doctors to customize stroke treatments based on the degree of brain death, instead of relying solely on how soon or late a patient comes to the hospital after having stroke symptoms. Stroke is the third leading cause of death among Americans. According to the American Stroke Association, 700,000 people each year experience a stroke. WVU researchers believe this research could change national protocols on how stroke patients are triaged and potentially extend treatment opportunity beyond the three-to-six hour window.


Under NIH stroke guidelines, hospitals typically administer tPA (a clot-busing drug) to patients within a three-hour window of stroke onset. After six hours, it’s generally considered too risky to administer even interarterial clot busting medicines, due to the risk of a potentially deadly hemorrhage.

But research presented by interventional neuroradiologists Jeff Carpenter, M.D., and Ansaar Rai, M.D., Assistant Professors at The Department of Neurological Surgery of West Virginia University School of Medicine, suggests more lives might be saved and debilitating side effects minimized if treatment of stroke patients was based on qualitative and quantitative imaging such as CT perfusion and CT angiography and not on generalized application of arbitrary time windows of three of six hours.

Those windows can exclude some patients who may benefit from treatment and include others who may suffer from serious complications of the treatment. Application of his research could increase the time window of treatment for stroke patients to greater than seven hours. This is significant because patients often don’t present to hospitals until after the three-hour window has closed because they don’t recognize the symptoms of stroke, can’t summons help quickly, or reside in rural areas. Additionally, those that do present in time can receive treatment that results in hemorrhage. A 2003 study published in Stroke which analyzed 15 published reports of tPA use in more than 2600 acute stroke patients found the intracerebral hemorrhage rate was 5.2 percent.

The WVU study shows that CT perfusion, which measures blood flow, is very accurate at determining which patients would best benefit from treatment and which should not receive clot-busting drugs. In the study, less than one percent of patients suffered a hemorrhage after receiving tPA, compared with the average of 5.2 percent of patients cited by the Stroke study.

CT perfusion allows radiologists to determine which portions of a stroke patient’s brain are dead, and which portions are dying but capable of being salvaged. Once a ratio of dead to dying brain is calculated, doctors can determine the best course of treatment. Only those patients whose brains are damaged but still alive will benefit from that treatment of acute revascularization of a blocked blood vessel.

To determine accuracy of CT perfusion, patients received both CT perfusion and an MRI. Results of the study presented shows that CT perfusion results correspond exceedingly well to MRI studies on several parameters including measuring cerebral blood volume, which indicates the severity of a blockage. About 60 percent of patients deemed candidates for intervention following CT perfusion were able to have their clots removed successfully by interarterial administration of tPA and the MERCI (corkscrew) procedure. In MERCI, the blood clot causing the stroke is removed by threading a corkscrew-like device through a catheter fed through the groin.

While MRIs are considered the gold standard for post stroke analysis, they are rarely performed and generally impractical because: they take 30 minutes to perform, require a stroke patient to be still to capture clean images (the patient may be moving or thrashing), require doctors to check for metal in the patients body (which may be impossible if no family members are present) and the MRI units themselves are often not adequately staffed or not located near the emergency room.

CT perfusion offers distinct advantages because most hospital emergency rooms use them frequently for other purposes, they take one to two minutes to scan (versus 30 minutes for MRI), and provide clear images even if a patient cannot lie perfectly still. Most hospitals need only to buy software (at a relatively inexpensive cost) to upgrade their systems and institute training programs.

In the coming months, Drs. Carpenter and Rai are expecting to publish their study in a nationally recognized journal.

Paul Moniz | EurekAlert!
Further information:
http://www.widmeyer.com

More articles from Studies and Analyses:

nachricht Study relating to materials testing Detecting damages in non-magnetic steel through magnetism
23.07.2018 | Technische Universität Kaiserslautern

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>