Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study explains process leading to many proteins from one gene

15.04.2005


New findings from researchers at UT Southwestern Medical Center help explain how the 20,000 to 25,000 genes in the human genome can make the hundreds of thousands of different proteins in our bodies.



Genes are segments of DNA that carry instructions for making proteins, which in turn carry out all of life’s functions. Through a natural process called "alternative splicing," information contained in genes is modified so that one gene is capable of making several different proteins.

"Alternative splicing is a key mechanism for achieving a diverse range of proteins, which contributes to the complexity of higher organisms," said Dr. Harold "Skip" Garner, professor of biochemistry and internal medicine at UT Southwestern and senior author of a new study aimed at understanding how and why alternative splicing occurs in humans.


The study is available online and will be published in the April 15 issue of the journal Bioinformatics.

Errors in alternative splicing can result in truncated or unstable proteins, some of which are responsible for human diseases such as prostate cancer and schizophrenia, Dr. Garner said. But errors also can result in proteins with new functions that help drive evolutionary changes.

"Alternative splicing appears to occur in 30 percent to 60 percent of human genes, so understanding the regulatory mechanisms guiding the process is fundamentally important to almost all biological issues," said Dr. Garner.

Alternative splicing can be likened to alternative versions of a favorite cookie recipe. If the original recipe (the gene) calls for raisins, walnuts and chocolate chips, and you copy the recipe but leave out the raisins, you’ll still get a cookie (protein) from your version, just a different cookie. Omit a necessary ingredient, such as flour, and you’ll have a mess (nonfunctioning or malfunctioning protein).

Similarly, the information in genes is not directly converted into proteins, but first is copied by special enzymes into RNA, or more specifically, pre-messenger RNA.

While the entire gene is copied into pre-mRNA, not all of that information will be used to make a protein. RNA segments called exons carry the protein-making information, while the segments between exons, called introns, are snipped out of pre-mRNA by special proteins. Exons also may be snipped out. Once snipping is complete, the remaining exons are spliced back together to form a fully functional, mature mRNA molecule, which goes on to create a protein.

Using computers, the UT Southwestern researchers scanned the human genome and found that the presence of certain DNA sequences called "tandem repeats" that lie between exons are highly correlated with the process of alternative splicing. They found a large number of tandem repeats on either side of exons destined to be spliced out of the pre-mRNA. The tandem repeat sequences also were complementary and could bind to each other.

"The complementary tandem repeat sequences on either side of an exon allow the DNA to loop back on itself, bind together, pinch off the loop containing a particular exon and then splice it out," Dr. Garner explained.

The chemical units that make up an organism’s DNA are abbreviated with the letters A, C, T and G. Strings of these letters form genes and spell out genetic instructions. Tandem repeats have DNA sequences with the same series of letters repeated many times, such as CACACACACACA.

Tandem repeats are "hot spots" where errors can easily be made during the copying process; for example, an extra CA could be added or deleted from the correct sequence. These errors could then result in a gene improperly splicing out an exon, thus making the wrong protein, Dr. Garner said. His research group has previously shown that these sequences are highly variable in cancer, and he said the new findings could go a long way toward understanding the genetic nature of how cancers start and progress.

"With this new understanding, we can now predict all genes that can re-arrange in this way and even predict which might splice improperly, resulting in disease," he said.

Former UT Southwestern research associate Dr. Yun Lian was a co-author of the study.

The research was funded by the National Cancer Institute, the National Heart, Lung and Blood Institute and the M.R. and Evelyn Hudson Foundation.

Amanda Siegfried | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Studies and Analyses:

nachricht Study relating to materials testing Detecting damages in non-magnetic steel through magnetism
23.07.2018 | Technische Universität Kaiserslautern

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Air pollution leads to cardiovascular diseases

21.08.2018 | Ecology, The Environment and Conservation

Researchers target protein that protects bacteria's DNA 'recipes'

21.08.2018 | Life Sciences

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>