Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NYU study reveals how brain’s immune system fights viral encephalitis

17.03.2005


New York University biologists have uncovered how the innate immune system in mice’s brains fights viral infection of neurons. The findings, published as the cover study in the latest issue of Virology, show that proteins in neurons fight the virus at multiple stages--by preventing the formation of viral RNA and proteins, and blocking the virus’ release, which could infect other cells in the brain.



"There is no magic bullet in fighting viral infections in neurons," said NYU Biology Professor Carol Shoshkes Reiss, the study’s senior author. "However, these findings show the redundancy of the immune system--when one response fails to fight infection, others step in."

The study was also conducted at NYU, by a post-doctoral fellow, Mark Trottier, Jr., PhD, now at Michigan State, and Beth Palian, currently a doctoral student at the University of Southern California.


Recently, the West Nile virus has been responsible for a viral encephalitis outbreak in the northeast. The NYU researchers set out to determine how the body can fight viral encephalitis. Specifically, they examined how type I interferons--proteins made by the body that are released in response to stimuli, notably infection--work in neurons and to determine if nerve cells’ response to interferons is similar to that of other cells.

Examining the effect of the virus in mice and in cell culture, the researchers found that neurons are sensitive to the protective effect of interferons, inducing pathways to fight the virus’ spread. However, their findings showed that interferons fight the virus at different stages of the virus’ life cycle. First, they inhibit viral RNA and protein synthesis. If this fails, interferons block the virus from forming particles which can be released and infect other neurons. This is critical, since the immune system does not kill infected precious neurons the way it does other cells, which can be replaced.

The researchers attributed the spread of viral encephalitis to the inability of lab mice to produce sufficient amounts of interferons to fight the virus.

James Devitt | EurekAlert!
Further information:
http://www.nyu.edu

More articles from Studies and Analyses:

nachricht Some brain tumors may respond to immunotherapy, new study suggests
11.12.2018 | Columbia University Irving Medical Center

nachricht Climate change and air pollution damaging health and causing millions of premature deaths
30.11.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>