Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Liposome finding implies electrical effect on cell development

16.03.2005


Experiments with liposomes – cell-like "water balloons" composed of artificially created phospholipid bilayers similar to natural cell membranes – have revealed unexpected behavior in the presence of electrical fields that may provide a paradigm-shifting change in science’s understanding of biomembrane function in operating living systems.



Arizona State University chemists Mark Hayes and Michele Pysher have found that liposomes have a tendency to form tube-like extensions in their membranes through the influence of local electrical fields. In particular, the surprising finding of such electrically caused bionanotubule formation may reveal a previously unknown process involved in the development of structures like axons and dendrites in nerve cells.

Hayes will present the results of the experiments at a 2 p.m. March 15 session entitled "Colloids in Complex Fluids" at the American Chemical Society meeting in San Diego.


In the experiments, the researchers placed liposomes in a droplet of water and applied very low electric fields (5-10 volts per centimeter), much lower than the fields present in operating neurons (a fraction of a volt but operating over a very short distance--less than a micron--to produce a field up to one thousand times stronger). In images achieved through optical and scanning electron microscopy, microtubules were observed to immediately form and extend from the phospholipid balloon, like a seed putting forth a stalk or root.

Hayes believes that the phenomena may have significant implications for both cellular biology and for nanotechnology. "This finding might not only be important in its application to understanding life processes, but it has a potentially exciting practical application in the fabrication of bionanotubes," he said.

James Hathaway | EurekAlert!
Further information:
http://www.asu.edu

More articles from Studies and Analyses:

nachricht Climate change and air pollution damaging health and causing millions of premature deaths
30.11.2018 | International Institute for Applied Systems Analysis (IIASA)

nachricht Reading rats’ minds
29.11.2018 | Institute of Science and Technology Austria

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

New method gives microscope a boost in resolution

10.12.2018 | Physics and Astronomy

Carnegie Mellon researchers probe hydrogen bonds using new technique

10.12.2018 | Life Sciences

ETRI exchanged quantum information on daylight in a free-space quantum key distribution

10.12.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>