Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds new designer drug is potent treatment for chronic myelogenous leukemia

21.02.2005


More potent and highly selective therapy effective in treating Gleevec-resistant disease



A laboratory study led by researchers at Dana-Farber Cancer Institute has shown that a potent and highly selective therapy for chronic myelogenous leukemia (CML) may ultimately be more effective than Gleevec®, the current standard of care. The researchers report in the February issue of Cancer Cell that the new compound, AMN107, is about 20 times more potent than Gleevec and is effective in treating Gleevec-resistant disease in model systems. Discovered by and in development with Novartis Pharma AG, AMN107 is a small molecule tyrosine kinase inhibitor.

"While Gleevec represents a major treatment advance for CML – approximately 95 percent of patients treated with Gleevec achieve remission – there clearly is a need for therapies that produce longer remissions, are active against advanced disease, and can be used when Gleevec loses effectiveness," says Dana-Farber’s James Griffin, MD, senior author of the study.


Gleevec shuts down CML by blocking the function of Bcr-Abl, the abnormal tyrosine kinase protein in the leukemic cells that causes them to grow too quickly. However, it does not bind very tightly to this protein, and patients can develop a resistant type of Bcr-Abl that no longer binds to Gleevec at all.

Using rational drug design to circumvent these shortcomings, researchers at Novartis determined the crystal structure of Bcr-Abl, and then constructed compounds that would lock into the receptor more securely than Gleevec. Investigators at Dana-Farber tested the new compounds to measure their effectiveness against CML in laboratory cell cultures and mice with the disease.

Data from the study published in Cancer Cell showed that in experiments with laboratory samples of CML cells, AMN107 killed the cells more effectively than Gleevec. In follow-up studies with mice with a human form of CML, AMN107 produced lengthier remissions than Gleevec and triggered remissions in animals in which the disease had become resistant to Gleevec. Side effects in the animals were minimal.

Synthesized in August 2002, AMN107 entered early Phase I clinical studies in May 2004 – 21 months later. Data presented last December at the American Society of Hematology showed that AMN107 had demonstrated significant clinical activity in the most challenging setting: Gleevec resistant accelerated and blast crisis CML patients.

"We’re very encouraged by the results so far," remarks Griffin, who is also a professor of medicine at Harvard Medical School. "This is an elegant example of how rational drug design –– developing drugs based on a molecular understanding of cell structures and processes –– can be used to attack human diseases."

The findings contribute to a larger Dana-Farber research effort, dubbed the "Kinase Project," which seeks to identify abnormal tyrosine kinases -- enzymes that spark or halt growth -- in cancer cells and test agents known to act against them.

The Cancer Cell study’s lead author is Ellen Weisberg, PhD, of Dana-Farber. Co-authors include researchers at Dana-Farber, Novartis, Brigham and Women’s Hospital, and Children’s Hospital Boston.

Bill Schaller | EurekAlert!
Further information:
http://www.danafarber.org

More articles from Studies and Analyses:

nachricht New study first to predict which oil and gas wells are leaking methane
21.12.2018 | University of Vermont

nachricht Droughts boost emissions as hydropower dries up
21.12.2018 | Stanford's School of Earth, Energy & Environmental Sciences

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

Im Focus: Mission completed – EU partners successfully test new technologies for space robots in Morocco

Just in time for Christmas, a Mars-analogue mission in Morocco, coordinated by the Robotics Innovation Center of the German Research Center for Artificial Intelligence (DFKI) as part of the SRC project FACILITATORS, has been successfully completed. SRC, the Strategic Research Cluster on Space Robotics Technologies, is a program of the European Union to support research and development in space technologies. From mid-November to mid-December 2018, a team of more than 30 scientists from 11 countries tested technologies for future exploration of Mars and Moon in the desert of the Maghreb state.

Close to the border with Algeria, the Erfoud region in Morocco – known to tourists for its impressive sand dunes – offered ideal conditions for the four-week...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

A new twist on a mesmerizing story

17.01.2019 | Physics and Astronomy

Brilliant glow of paint-on semiconductors comes from ornate quantum physics

17.01.2019 | Materials Sciences

Drones shown to make traffic crash site assessments safer, faster and more accurate

17.01.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>