Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NYU psychology researchers show how attention enhances visual perception

10.02.2005


Researchers at New York University have determined the location in the brain where involuntary attention enhances visual processing. The researchers, from NYU’s Department of Psychology and Center for Neural Science, found that attending to, or selectively processing information from a given location without directing our eyes to that location, enhances performance in visual tasks as well as the neural activity underlying the processing of ensuing images. The results are published in the latest issue of the journal Neuron.



A sudden appearance of an object in our visual field will grab our attention--causing an involuntary reaction. Taosheng Liu, Franco Pestilli, and Marisa Carrasco, the researchers for the Neuron study, have previously investigated this process. Behavioral research from the Carrasco lab has shown that involuntary, or transient, attention improves performance in simple, early visual processing tasks--it actually helps us see things better. The NYU study in Neuron shows the neural basis of this effect. It identifies an increase in neural activity in areas of the brain that respond to the attended stimulus--that is, to the information that is selectively processed at a given location.

In this study, the researchers presented observers with two patches simultaneously in the periphery of their line of sight on a computer display: one tilted (target) and one vertical (distracter). They were asked to indicate whether the target was tilted to the right or to the left. Each display was preceded by a cue that was either on the same (cued location) or the opposite (uncued location) side of the target [see diagram of experimental trial]. The purpose of the pre-cue was to automatically attract observers’ attention to its location. Importantly, the cue was completely uninformative regarding both target location and orientation, and observers were told so. Although there was no incentive to use the cue, observers still performed better when the target appeared at the cued location than when it appeared at the uncued location, confirming the reflexive nature of this type of attention orienting.


The researchers used functional magnetic resonance imaging (fMRI) to measure brain activity while observers performed this task inside the MR scanner housed at the NYU Center for Brain Imaging. This technology allows scientists to map activity in the visual cortex [see diagram of brain]. This experiment revealed that when a cue preceded the target, the target evoked a larger brain response than when the cue appeared in the other location. It also showed the magnitude of the cueing effect increased from the earliest to later areas of visual processing [see graph].

Liu, who earned his undergraduate degree from the University of Science and Technology of China, received his Ph.D. from Columbia University and currently is a postdoctoral researcher at NYU. Pestilli obtained his licentiate from the University of Rome and is an NYU doctoral student. Carrasco received her licentiate in psychology from the National University of Mexico before going on to receive her M.A. and Ph.D. in psychology from Princeton University. She is a professor of psychology and neural science and chair of NYU’s Psychology Department.

James Devitt | EurekAlert!
Further information:
http://www.nyu.edu

More articles from Studies and Analyses:

nachricht Antarctic Ice Sheet mass loss has increased
14.06.2018 | Technische Universität Dresden

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>