Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study identifies the most common genetic cause of Parkinson’s disease

18.01.2005


Researchers have found that a single mutation in a recently discovered Parkinson’s disease gene is responsible for 5 percent of inherited Parkinson’s disease cases. The finding opens the door to the possibility of genetic screening for the LRRK2 gene mutation, which is believed to be the most common genetic cause of inherited Parkinson’s disease identified to date.



The study, conducted by William C. Nichols, PhD, a geneticist at Cincinnati Children’s Hospital Medical Center, is one of three Parkinson’s studies published in the Tuesday, January 18 online edition of The Lancet. The study will appear in the January 29 edition of the journal. The second study is by Nicholas W. Wood, MD, of the Institute of Neurology in London. The third study is by Vincenzo Bonifati, MD, PhD, of Erasmus MC in Rotterdam, Netherlands.

Parkinson’s disease, a disorder of the nervous system that causes tremors and muscular rigidity, affects more than one million people in the United States and is the second most common neurodegenerative disorder – second only to Alzheimer’s disease in frequency.


The Cincinnati Children’s study focused on a group of 767 Parkinson’s disease patients from 358 different families. The patients were recruited by specialists from 59 medical centers associated with the Parkinson Study Group, a non-profit, cooperative group of Parkinson’s disease experts from the United States, Canada and Puerto Rico. The study found that 5 percent of the patients carried the same LRRK2 mutation. The Wood report focused on Parkinson’s disease patients without a known family history of the disease. Dr. Wood found the same LRRK2 gene mutation in eight of 482 individuals in the study. The Bonifati study identified the same LRRK2 gene mutation as the Cincinnati Children’s study. Bonifati found the mutation in four of 61 families with a history of Parkinson’s disease.

"When we began, we really didn’t know how frequent the mutation in the LRRK2 gene would be, but to find the same single mutation in the genome in Parkinson’s patients is pretty dramatic. No other mutation in any other known Parkinson’s gene has been found in such high frequency," said Dr. Nichols, who is the lead author of the Cincinnati Children’s study.

LRRK2 is one of five Parkinson’s disease genes in which mutations have been identified. The gene was identified in October 2004 by Andrew Singleton, PhD, of the National Institute on Aging at the National Institutes of Health, who is a co-author of the Nichols and Wood studies in The Lancet. The LRRK2 gene was isolated on a region of chromosome 12 called PARK8 by Dr. Singleton and colleagues who studied five families with a history of Parkinson’s disease.

Individual genes can have many mutations, which is also true of the LRRK2 gene. Dr. Singleton has identified other mutations in the LRRK2 gene, but those mutations were not manifested to the same degree as the mutation described in the Nichols’ study, which was found to occur in about one of every 22 patients with inherited Parkinson’s disease.

"It looks like mutations in this gene are going to account for far more than mutations in other Parkinson’s disease genes identified to date. Finding the same mutation in a single gene accounting for such a large percentage of patients is quite remarkable, and this mutation should be included in any future genetic testing for the disease," Dr. Nichols said.

The patients in the Cincinnati Children’s study who had the mutation did have longer disease duration at the time of their clinical evaluation for the study, but their symptoms were less severe, suggesting that the mutation in LRRK2 is associated with slower disease progression, Dr. Nichols said.

Parkinson’s disease is a progressive disorder that is caused by the degeneration of nerve cells in the portion of the brain that controls movement. The disease occurs when certain nerve cells die or become impaired and can no longer produce dopamine. Without dopamine, individuals can develop tremor or trembling in hands, arms, legs, jaw, and face along with rigidity or stiffness of the limbs, slowness of movement; and impaired balance or coordination. Patients may also have difficulty walking, talking, or completing other simple tasks. The incidence of Parkinson’s disease increases with age.

Until recently, it was thought that environmental factors were the primary cause of Parkinson’s disease. A genetic link was thought to exist in the rare early onset form of the disease in people diagnosed before age 40 (children as young as 14 have been diagnosed with the juvenile form of Parkinson’s disease), but not in the more common form of the disease in which people, on average, are diagnosed at about 60 years. The first Parkinson’s disease gene was identified in 1997.

Dr. Nichols is a geneticist who specializes in the identification of novel disease genes. In addition to Parkinson’s disease, he conducts research on primary pulmonary hypertension and juvenile rheumatoid arthritis.

The Cincinnati Children’s study was funded by the National Institute of Neurological Disorders and Stroke of the National Institutes of Health.

Cincinnati Children’s conducted this research in conjunction with Dr. Singleton of the National Institute on Aging, and Tatiana Foroud, PhD, of Indiana University Medical Center, who is also a co-author and principal investigator of an $8 million grant from the National Institute of Neurological Disorders and Stroke (NINDS).

Amy Reyes | EurekAlert!
Further information:
http://www.cchmc.org
http://www.cincinnatichildrens.org

More articles from Studies and Analyses:

nachricht Researchers simplify tiny structures' construction drip by drip
12.11.2018 | Princeton University, Engineering School

nachricht Mandibular movement monitoring may help improve oral sleep apnea devices
06.11.2018 | Elsevier

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>