Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain tumor study reveals why treatment efforts fail in genetic disorder

03.01.2005


Drugs used to treat the tumors common in people with a disorder called neurofibromatosis 1 rarely work, and scientists now know why. The chemotherapy drugs target a group of related proteins, call RAS proteins, which are thought to be responsible for these tumors. But researchers at Washington University School of Medicine in St. Louis found that the disease affects only one member of the protein family, and it happens to be the one form of RAS that does not respond well to these particular treatments.



The study, which will appear in the Jan. 1 issue of the journal Cancer Research, suggests where researchers should now look for more promising approaches to treating neurofibromatosis tumors, and may help scientists understand other cancers related to RAS. "The downside is our study proves we’re not using the right therapies for this particular problem," says principal investigator David H. Gutmann, M.D., Ph.D., the Donald O. Schnuck Family Professor of Neurology and professor of genetics and of pediatrics. "But there’s a chance to make lemonade out of this lemon: We now have a rational reason for why these drugs aren’t working, so we should be able to explore new, more effective treatment options."

About one in 4,000 newborns has neurofibromatosis 1, in which every cell in the body has one normal and one mutated copy of a gene called NF1. If a cell’s normal copy also is mutated, tumors can form. Children with neurofibromatosis 1 are therefore predisposed to developing a variety of serious complications as they grow older, including skin, spine and brain cancers.


Scientists previously found that RAS proteins become overly active when both copies of the NF1 gene are abnormal in tumors from patients with neurofibromatosis 1. So physicians have tried treating these tumors with drugs that prevent RAS activity. Unfortunately, the results have been disappointing.

To understand why, Gutmann’s team examined whether all forms of RAS are overly active in mouse cells lacking both copies of the Nf1 gene. They specifically examined support cells in the brain called astrocytes, which often are affected by neurofibromatosis 1. Surprisingly, only one member of the protein family, K-RAS, was significantly affected, suggesting it is an important factor in this disease.

Moreover, when the team activated K-RAS in normal astrocytes, the cells developed many of the same characteristics and activities as those lacking Nf1. For example, both types of abnormal astrocytes were round and dense, grew and multiplied at a similar rate and moved around more than normal. They also discovered they could reverse abnormalities in cells without Nf1 by decreasing K-RAS activity.

K-RAS activation also mimicked Nf1 loss in live mice. Gutmann’s team previously discovered that mice without Nf1 genes in their astrocytes grow an abnormally large number of astrocytes in their brains, but they don’t develop tumors unless all other brain cells are missing at least one copy of the gene. In this study, the researchers found that K-RAS follows a similar pattern: When the protein was overly active in astrocytes of mice with two normal copies of Nf1, the cells multiplied but did not develop into tumors; however, tumors did form when K-RAS was activated in astrocytes of mice lacking one copy of Nf1 in all cells.

Another form of RAS previously suspected to be linked to neurofibromatosis, called H-RAS, did not mimic loss of the Nf1 gene in tissue culture or in live animals. "Collectively, these results suggest that K-RAS activation, specifically, is the biological equivalent of Nf1 loss in astrocytes," Gutmann says. "If we can understand what K-RAS does that’s unique, we should be able to develop targeted therapies."

The research team already has made progress toward that goal. Too much RAS and too little Nf1 are both known to result in a cascade of events, including activation of another protein called Rac1, which in turn activates LIM kinase. Gutmann and his colleagues found that that effect could be mimicked in normal astrocytes by selectively activating K-RAS. Activating H-RAS did not trigger the cascade. "Though K-RAS doesn’t respond well to available chemotherapy drugs, one of the proteins it interacts with might," Gutmann says. "By showing that K-RAS activates a pathway that is unique from the pathways activated by other RAS molecules, our findings may lead us to a variety of better treatment targets."

Gila Z. Reckess | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Studies and Analyses:

nachricht Antarctic Ice Sheet mass loss has increased
14.06.2018 | Technische Universität Dresden

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>