Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mercury on the horizon

21.12.2004


University of Nevada study finds plants assimilate mercury from air

Mercury gets around. A naturally occurring contaminant, mercury is found in water and soil but scientists are not exactly sure how mercury makes its way through the environment. Concerns over increasing levels of mercury contamination have sparked fish consumption advisories in certain areas.

Knowing how mercury ends up in these locations, however, is an area of concern for environmental scientists. Researchers at the University of Nevada, Reno recently discovered that plants play a significant role in how mercury travels.



“Based on previous studies, what we originally thought was that mercury in soil would be absorbed through a tree’s roots, then released through the tree’s leaves into the air,” said Jody Ericksen, a Nevada graduate student who studied the contaminant for her master’s degree in Environmental Science and Health. “We were wrong. What happened is that the plants absorbed the mercury from the air.”

According to Nevada researchers, once a tree’s leaves contain mercury, those leaves eventually fall off, decay and mercury goes back into the soil, air and, ultimately, water.

According to Mae Gustin, associate professor in the university’s Department of Natural Resources and Environmental Science, the results of the study could have global implications.

Mercury from coal-fired power plants, or from areas such as Nevada that have high levels of naturally occurring mercury, can be in the air for six to 12 months and can cross continents.

“Researchers who model how mercury travels through the environment tell us that even if the United States turned off all of its coal-fired power plants, we would still have mercury being deposited here because of China’s mercury emissions,” Gustin said. “For mercury controls to make a difference there has to be a global effort.”

The researchers’ study was published in a recent issue of Environmental Science & Technology, one of the most prestigious environmental science journals.

The study was funded with a grant from the EPA Experimental Program to Stimulate Competitive Research. Collaborators on the project included: Dave Schorran and James Coleman of the Desert Research Institute; Dale Johnson, a professor of Natural Resources and Environmental Science at the University of Nevada, Reno; and Steven Lindberg of the Oak Ridge National Laboratory.

Bob Conrad | EurekAlert!
Further information:
http://www.unr.edu

More articles from Studies and Analyses:

nachricht New study first to predict which oil and gas wells are leaking methane
21.12.2018 | University of Vermont

nachricht Droughts boost emissions as hydropower dries up
21.12.2018 | Stanford's School of Earth, Energy & Environmental Sciences

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Additive manufacturing reflects fundamental metallurgical principles to create materials

18.01.2019 | Materials Sciences

How molecules teeter in a laser field

18.01.2019 | Life Sciences

The cytoskeleton of neurons has been found to be involved in Alzheimer's disease

18.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>