Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study shows how mad cow prions hitch a ride into intestine

15.12.2004


They piggyback on iron-storing proteins after surviving digestive juices



A new study from the Department of Pathology at Case Western Reserve University School of Medicine shows that the infectious version of prion proteins, the main culprits behind the human form of mad cow disease or variant Creutzfeldt-Jakob Disease (vCJD), are not destroyed by digestive enzymes found in the stomach. Furthermore, the study finds that the infectious prion proteins, also known as prions, cross the normally stringent intestinal barrier by riding piggyback on ferritin, a protein normally absorbed by the intestine and abundantly present in a typical meat dish. The study appears in the Dec. 15 issue of the Journal of Neuroscience.

Prions are a modified form of normal proteins, the prion proteins, which become infectious and accumulate in the nervous system causing fatal neurodegenerative disease. Variant CJD results from eating contaminated beef products from cattle infected with mad cow disease. To date, 155 cases of confirmed and probable vCJD in the world have been reported, and it is unclear how many others are carrying the infection.


According to the study’s senior author Neena Singh, M.D., Ph.D., associate professor of pathology, little is known about the mechanism by which prions cross the human intestinal barrier, which can be a particularly difficult obstacle to cross. "The mad cow epidemic is far from over, and the continuous spread of a similar prion disease in the deer and elk population in the U.S. raises serious public health concerns," said Singh. "It is therefore essential to understand how this disease is transmitted from one species to another, especially in the case of humans where the infectious prions survive through stages of cooking and digestion."

Using brain tissues infected with the spontaneously occurring version of CJD which is also caused by prions, the researchers simulated the human digestive process by subjecting the tissue to sequential treatment with digestive fluids as found in the human intestinal tract. They then studied how the surviving prions are absorbed by the intestine using a cell model. The prions were linked with ferritin, a cellular protein that normally binds excess cellular iron to store it in a soluble, non-toxic form within the cell. "Since ferritin shares considerable similarity between species, it may facilitate the uptake of prions from distant species by the human intestine,"said Singh."This important finding provides insight into the cellular mechanisms by which infectious prions ingested with contaminated food cross the species barrier, and provides the possibility of devising practical methods for blocking its uptake," she said. "If we can develop a method of blocking the binding of prions to ferritin, we may be able to prevent animals from getting this disease through feed, and stop the transmission to humans."

Currently, Singh’s group is checking whether prions from distant species such as deer and elk can cross the human intestinal barrier.

George Stamatis | EurekAlert!
Further information:
http://www.case.edu

More articles from Studies and Analyses:

nachricht Study relating to materials testing Detecting damages in non-magnetic steel through magnetism
23.07.2018 | Technische Universität Kaiserslautern

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>