Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study discovers why "persister" cells never say die

06.12.2004


NU biologist isolates gene making infections drug-resistant



Northeastern University today announced that biologist Kim Lewis has discovered the gene that prevents antibiotics from successfully destroying infections within biofilm. For years, scientists have struggled to understand why a certain type of infection – known as biofilms – are often resistant to antibiotics. Biofilms contain cells that are identical to the infecting cells, but are not corrupted and destroyed by antibiotics. Lewis discovered these “persister” cells, contain a gene (HipA) that generates a toxin (the ReIE toxin) which puts the cell into hibernation and because antibiotics must work on growing cells to destroy them, the hibernating cells can outlast the antibiotic and then repopulate the infection.

The results of the study appears in the most recent issue of the Journal of Bacteriology, titled “Specialized Persister Cells and the Mechanism of Multidrug Tolerance in Escherichia coli.” Lewis, the lead author, worked with NU graduate students Iris Keren, Devang Shaw and Amy Spoering , as well as Niilo Kaldalu of Tartu University in Estonia. “ The implications for the discovery are significant; medical science is racing the clock against increasingly drug-tolerant infections. Biofilm infections are notoriously difficult to stamp out. Armed with the knowledge of the HipA gene that allows the infections to persist, sometime for years, biologists can look for ways to deactivate the gene and wipe out the infection,” says Lewis.


Biofilm infections, which attach to a surface while encased in a membrane, typically attack surgically implanted medical devices, such as mechanical heart valves or artificial joints. They can also take the form of periodontal disease, ear infections or fatal lung infections. The infection can be nearly impossible to eradicate, requiring implants to be removed at great risk and cost. Deleting or deactivating the HipA gene could save thousands of lives and millions of dollars.

Genevieve Haas | EurekAlert!
Further information:
http://www.neu.edu

More articles from Studies and Analyses:

nachricht Study relating to materials testing Detecting damages in non-magnetic steel through magnetism
23.07.2018 | Technische Universität Kaiserslautern

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>