Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

To weigh less, eat more

18.11.2004


Two new Penn State studies show that people who pursue a healthy, low-fat, low-energy-density diet that includes more water-rich foods, such as fruits and vegetables, consume more food but weigh less than people who eat a more energy-dense diet.



Dr. Barbara Rolls, who holds the Guthrie Chair of Nutrition in Penn State’s College of Health and Human Development, directed the studies. She says, "In one of the studies, we looked at the eating patterns of 7,500 men and women who constituted a representative sample of American adults. In the other study, 101 obese women were counseled to increase their intake of water-rich foods and to select reduced-fat foods rather than full-fat ones. In both cases eating more low-energy-dense, water-rich foods, such as fruits and vegetables, was associated with lower body weights. "Decreasing the energy density of your diet by choosing more low-energy-dense foods, such as fruits and vegetables, can be a successful strategy to lose weight without counting calories or fat grams," she adds.

Both studies were detailed today, Wednesday, Nov. 17, at the annual meeting of the North American Association for the Study of Obesity in Las Vegas, Nevada.


Dr. Jenny H. Ledikwe, postdoctoral fellow in nutritional epidemiology, conducted the study in which she looked at the diet patterns of 7,500 typical Americans. She calculated the average daily energy density of their intake using two 24-hour recalls from the 1994-96 U.S. Department of Agriculture Continuing Survey of Food Intakes by Individuals. She then compared the participants with low, medium and high energy density (ED) diets.

Ledikwe found that despite the fact that the people in the low energy density group ate a greater weight of food than those in the high energy density group, they consumed fewer calories and weighed less. She notes, "Individuals who ate low-fat, high-fiber diets rich in fruits and vegetables weighed less, consumed more food and had healthier eating patterns."

Julie Ello-Martin, doctoral candidate in nutrition, conducted the study in which women were counseled. In this study, 101 obese women were divided into two groups. One group, the energy density (ED) group, was counseled to eat more water-rich foods and to choose fat-reduced foods as ways to lower the energy density of their diet. The second group, the reduced-fat (RF) group, was counseled with more restrictive messages focusing on eating less fat and limiting portions.

The women in both groups received individual counseling for six months and a follow-up period of six additional months of individual and group counseling. No calorie or fat gram goals were assigned in either group. The women could eat whatever they wanted while following the principles they learned in their counseling sessions. After the first six-month period, the women in the ED group had lost 21 pounds while the women in the RF group had lost only 15 pounds. The women in the ED group also significantly lowered the energy density of their diet versus the RF group but there was no difference in fat intake.

Ello-Martin says, "This is the first long-term study to look at how a low energy density diet can affect body weight. It’s important because it shows that a healthy diet pattern can result in significant weight loss without couting calories or fat grams." Ello-Martin’s co-authors are Liane Roe, research nutritionist, and Rolls. The study was supported by a grant from the National Institute of Diabetes and Digestive and Kidney Disease.

Ledikwe’s co-authors include Rolls and the following nutritional epidemiologists from the Centers for Disease Control and Prevention: Heidi M. Blanck, Laura Kettel Khan, Mary Serdula, Jennifer D. Seymour, and Beth C. Tohill. The study was supported by grants from the National institute of Diabetes and Digestive and Kidney Diseases, and an appointment to the Research Participation Program at the Centers for Disease Control and Prevention, Division of Nutrition and Physical Activity administered by the Oak Ridge Institute for Science and Education.

Barbara Hale | EurekAlert!
Further information:
http://www.psu.edu

More articles from Studies and Analyses:

nachricht New study first to predict which oil and gas wells are leaking methane
21.12.2018 | University of Vermont

nachricht Droughts boost emissions as hydropower dries up
21.12.2018 | Stanford's School of Earth, Energy & Environmental Sciences

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Additive manufacturing reflects fundamental metallurgical principles to create materials

18.01.2019 | Materials Sciences

How molecules teeter in a laser field

18.01.2019 | Life Sciences

The cytoskeleton of neurons has been found to be involved in Alzheimer's disease

18.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>