Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UO study is first to link histamine receptors to heat stress

10.11.2004


Brett Wong is on a mission to help uncover the mechanism that regulates our ability to withstand heat stress. The goal is to help improve survival rates among those who suffer the most during heat waves: the elderly and people with conditions such as diabetes and heart disease.



The award-winning University of Oregon doctoral degree student’s research is the first to identify histamine receptors as contributing to increased blood flow during heat stress. Skin blood flow is a key factor in compensating for exposure to prolonged heat waves. "These are the same receptors that are involved in seasonal allergies for which people take antihistamines," says Wong, who is the lead author on an article describing his findings in the November issue of the Journal of Physiology. Co-authors are Brad W. Wilkins, research associate, and Christopher Minson, assistant professor of human physiology and co-director of the UO Exercise and Environmental Physiology Laboratories.

Theirs is the first study designed to examine a potential role for histamine receptors in skin blood flow in humans. They tested the H1 and H2 histamine receptors and found that only the H1 receptor was involved in skin blood flow changes. The National Institutes of Health (Heart, Lung and Blood Institute) funded the study. "Many deaths in the Midwest have been associated with an inability to increase skin blood flow and regulate body temperature," Wong says. "If we can understand the basic science behind increasing skin blood flow in healthy young individuals, we’ll be able to help at-risk populations."


Led by Wong, the UO research team outfitted 11 human subjects in water-perfused suits and increased their core body temperature to about 100 degrees Fahrenheit. He threaded four hollow microfibers into the skin on their forearms and used microdialysis to target doses of nitric oxide or two types of antihistamines. Laser-Doppler flowmetry (LDF) was used to monitor changes in skin blood flow during heat stress. "I personally don’t like needles but it’s a very powerful technique to study skin blood flow," says Wong, who knows firsthand what the subjects will experience, having tested the technique on himself.

A water-perfused suit is designed to tightly control skin temperature. The subjects wore a plastic coverall over the water-perfused suit, and the feet were wrapped in towels and plastic bags to minimize heat loss.

Current evidence suggests that sweating and increased skin blood flow (cutaneous active vasodilation) is mediated by the co-release of a neurotransmitter with acetylcholine from cholinergic nerves in the skin. However, the precise mechanism of action, and even the neurotransmitter itself, is unknown.

Earlier this year, Wong’s previous work in this area won the top national award for student research from the American College of Sports Medicine. The prize is given annually to only one student in the United States whose research is considered to be the most outstanding in the country.

Originally from Sierra Madre, Calif., Wong earned a bachelor’s degree from the University of California at Davis. His master’s degree is from the UO, and he expects to complete his doctoral degree in summer 2005. He plans to continue his research and eventually to teach in a university setting.

Melody Ward Leslie | EurekAlert!
Further information:
http://www.uoregon.edu

More articles from Studies and Analyses:

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Oxygen loss in the coastal Baltic Sea is “unprecedentedly severe”
05.07.2018 | European Geosciences Union

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>