Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Teens in smoggy areas at high risk for starting adulthood with serious lung deficits

09.09.2004


USC study in NEJM signals likely future health problems



By age 18, the lungs of many children who grow up in smoggy areas are underdeveloped and will likely never recover, according to a study in this week’s issue of the New England Journal of Medicine.

The research is part of the Children’s Health Study, the longest investigation ever into air pollution and kids’ health. Between 1993 and 2001, study scientists from the Keck School of Medicine of the University of Southern California tracked levels of major pollutants in 12 Southern California communities while following the pulmonary health of 1,759 children as they progressed from 4th grade to 12th grade. The 12 communities included some of the most polluted areas in the greater Los Angeles basin, as well as several low-pollution sites outside the area.


Keck School researchers previously found that children who were exposed to more air pollution scored more poorly on respiratory tests. In this latest study, researchers analyzed the same children’s respiratory health at age 18, when lungs are almost completely mature. "Teenagers in smoggy communities were nearly five times as likely to have clinically low lung function, compared to teens living in low-pollution communities," explains W. James Gauderman, Ph.D., associate professor of preventive medicine at the Keck School and lead author of the study. People with clinically low lung function have less than 80 percent of the lung function expected for their age-a significant deficit that would raise concerns during a doctor’s exam.

"When we began the study 10 years ago, we had no idea we would find effects on the lung this serious," says John Peters, M.D., Hastings Professor of Preventive Medicine at the Keck School of Medicine, director of the Southern California Environmental Health Sciences Center, and senior author of the study.

Study technicians traveled to participating schools every year and tested children’s lung function, a measure of how well their lungs work. As an example, someone with sub-par lung function cannot exhale and blow up a balloon as quickly or as big as someone with good lung function could.

Researchers correlated the students’ lung health measurements with levels of air pollutants monitored in the communities during the same time period. They found greater deficits in lung development in teenagers who lived in communities with higher average levels of nitrogen dioxide, acid vapor, particulate matter with a diameter of less than 2.5 micrometers (about a tenth the diameter of a human hair) and elemental carbon. "These are pollutants that all derive from vehicle emissions and the combustion of fossil fuels," says Gauderman.

Deficits in lung function have both short- and long-term effects. "If a child or young adult with low lung function were to have a cold, they might have more severe lung symptoms, or wheezing," Gauderman says. "They may have a longer disease course, while a child with better lung function may weather it much better." And potential long-term effects are more alarming. "Low lung function has been shown to be second only to smoking as a risk factor for all-cause mortality," Gauderman explains.

Lung function grows steadily as children grow up, peaking at about age 18 in women and sometime in the early 20s in men. Lung function stays steady for a short time and then declines by 1 percent a year throughout adulthood. As lung function decreases to low levels in later adulthood , the risk of respiratory diseases and heart attacks increases.

Researchers are unsure how air pollution may retard lung development. Gauderman believes chronic inflammation may play a role, with air pollutants irritating small airways on a daily basis. Scientists also suspect that pollutants might dampen the growth of alveoli, tiny air sacs in the lungs.

The research team will continue to follow the study participants into their early 20s, when their lungs will mature and stop developing entirely. They seek to find out if the participants begin to experience respiratory symptoms and if those who moved away from a polluted environment show benefits.

Jon Weiner | EurekAlert!
Further information:
http://www.usc.edu

More articles from Studies and Analyses:

nachricht New study first to predict which oil and gas wells are leaking methane
21.12.2018 | University of Vermont

nachricht Droughts boost emissions as hydropower dries up
21.12.2018 | Stanford's School of Earth, Energy & Environmental Sciences

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Additive manufacturing reflects fundamental metallurgical principles to create materials

18.01.2019 | Materials Sciences

How molecules teeter in a laser field

18.01.2019 | Life Sciences

The cytoskeleton of neurons has been found to be involved in Alzheimer's disease

18.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>