Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Western Canadian study concludes large-scale CO2 storage is safe

08.09.2004


A report released today at the international Greenhouse Gas Control Technologies Conference in Vancouver concludes that geological conditions in the Weyburn oil field in western Canada are favourable for long-term storage of carbon dioxide (CO2). The four-year, multidisciplinary study was conducted by the Petroleum Technology Research Centre (PTRC) in Regina under the auspices of the International Energy Agency Greenhouse Gas (IEA GHG) Research and Development Programme.

The PTRC worked on the study in close collaboration with EnCana Corporation of Calgary, Alberta, which operates the 50-year-old Weyburn field in southeastern Saskatchewan. "The Weyburn project was the first large-scale study ever conducted in the world of the geological storage of CO2 in a partially depleted oil field," explained Mike Monea, Executive Director of the PTRC. "While there are numerous large commercial CO2-enhanced oil-recovery operations globally, there are none that have undertaken the depth and extent of research that we have."

Natural Resources Canada (NRCan) is one of the 15 public- and private-sector institutions that funded the study. "I am pleased with the results of this project, and with the enormous potential for reducing greenhouse gas emissions from fossil fuels through capturing and storing CO2," said the Honourable R. John Efford, Minister of Natural Resources Canada. "The leading-edge technology demonstrated here is key to the Government of Canada’s approach to addressing climate change."



Other institutions which funded the CAN$40-million project include the United States Department of Energy, Saskatchewan Industry and Resources, Alberta Energy Research Institute and the European community. Industry participants include EnCana, BP, ChevronTexaco, Dakota Gasification Company, ENAA (Japan), Nexen, SaskPower, TransAlta and Total (France). Altogether, the project involved 24 research and consulting organizations in Canada, Europe and the United States.

During the study, researchers conducted a long-term risk assessment, completed geological and seismic studies, matched reservoir modeling against actual results, and performed repeated and frequent sampling to understand chemical reactions occurring in the reservoir.

"The Weyburn project is a prime example of innovative research in Saskatchewan that has global application," Saskatchewan Industry and Resources Minister Eric Cline said. "The work that has been done in Weyburn has enormous benefits for our growing oil industry and also represents a key contribution by our province to solving the challenges of climate change."

The IEA GHG Weyburn project’s most involved industry participant was EnCana Corporation of Calgary. "We are encouraged by the results," said Gerry Protti, EnCana’s Executive Vice-President of Corporate Relations. "At Weyburn, we are demonstrating every day that oil production can be enhanced in an environmentally responsible manner. We are pleased to have been part of this collaborative, international project involving industry, governments and researchers."

The Weyburn oil field has stored an estimated five million tonnes of CO2 over the IEA GHG project life -- equivalent to taking about one million cars off the road for one year. The CO2 is supplied through a 325-kilometre pipeline from Dakota Gasification Company’s coal-gasification plant at Beulah, North Dakota. "The IEA GHG Weyburn project is good news for addressing climate change because it proves that you can safely store 5,000 tonnes of CO2 per day in the ground rather than venting the greenhouse gas into the atmosphere," explained Malcolm Wilson, International Energy

Specialist with the PTRC and one of the founders of the project.

The Weyburn field was selected for the study because detailed geological records and core samples, as well as almost 50 years of production history, were readily available. Some 380 million barrels of oil have been produced from the field since it was discovered in 1954.

The IEA GHG Weyburn study was able to:

  • utilize seismic surveys to "see" the CO2 flow within the geological formations and mix with the oil reserves;
  • develop a model to predict the storage capacity of the reservoir and match results over time with the model;
  • predict in a risk-assessment model that most of the CO2 will remain in the reservoir in which it is injected, with a small amount sinking to even lower levels underground over the 5,000 years following the end of the project; and
  • conclude that the CO2 would never reach or penetrate overlying potable water zones or the atmosphere above ground level.

"Although we’re very excited with these conclusions, we believe there’s much more work to be done to determine how our techniques and systems can be applied from the Weyburn geological formation to other formations around the world, to make CO2 storage a real option for reducing our greenhouse gas emissions worldwide," Wilson said.

The Greenhouse Gas Control Technologies Conference, where the report was released, is the first international gathering of its kind ever held in Canada, drawing expert academics, scientists and policy-makers from around the world. The previous conference was held in Kyoto, Japan, in 2002.

The Government of Canada’s approach to climate change is focused on making the right choices for Canada. This will ensure that the actions taken contribute to the long-term goals of building a sustainable economy for the 21st century, a healthier environment and strong communities, while affirming Canada’s place in the world.

The Government of Canada contributed $6 million to this study. Funding for the initiative was provided for in the existing fiscal framework.

The Government of Saskatchewan contributed approximately $2.2 million to the project through the Saskatchewan Petroleum Research Incentive.

Joe Ralko | EurekAlert!
Further information:
http://www.ptrc.ca

More articles from Studies and Analyses:

nachricht New unprinting method can help recycle paper and curb environmental costs
26.06.2019 | Rutgers University

nachricht Robocabs: The mobility of the future?
25.06.2019 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer IDMT demonstrates its method for acoustic quality inspection at »Sensor+Test 2019« in Nürnberg

From June 25th to 27th 2019, the Fraunhofer Institute for Digital Media Technology IDMT in Ilmenau (Germany) will be presenting a new solution for acoustic quality inspection allowing contact-free, non-destructive testing of manufactured parts and components. The method which has reached Technology Readiness Level 6 already, is currently being successfully tested in practical use together with a number of industrial partners.

Reducing machine downtime, manufacturing defects, and excessive scrap

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Shell increases versatility of nanowires

26.06.2019 | Materials Sciences

Hubble finds tiny 'electric soccer balls' in space, helps solve interstellar mystery

26.06.2019 | Physics and Astronomy

New combination therapy established as safe and effective for prostate cancer

26.06.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>