Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Western Canadian study concludes large-scale CO2 storage is safe

08.09.2004


A report released today at the international Greenhouse Gas Control Technologies Conference in Vancouver concludes that geological conditions in the Weyburn oil field in western Canada are favourable for long-term storage of carbon dioxide (CO2). The four-year, multidisciplinary study was conducted by the Petroleum Technology Research Centre (PTRC) in Regina under the auspices of the International Energy Agency Greenhouse Gas (IEA GHG) Research and Development Programme.

The PTRC worked on the study in close collaboration with EnCana Corporation of Calgary, Alberta, which operates the 50-year-old Weyburn field in southeastern Saskatchewan. "The Weyburn project was the first large-scale study ever conducted in the world of the geological storage of CO2 in a partially depleted oil field," explained Mike Monea, Executive Director of the PTRC. "While there are numerous large commercial CO2-enhanced oil-recovery operations globally, there are none that have undertaken the depth and extent of research that we have."

Natural Resources Canada (NRCan) is one of the 15 public- and private-sector institutions that funded the study. "I am pleased with the results of this project, and with the enormous potential for reducing greenhouse gas emissions from fossil fuels through capturing and storing CO2," said the Honourable R. John Efford, Minister of Natural Resources Canada. "The leading-edge technology demonstrated here is key to the Government of Canada’s approach to addressing climate change."



Other institutions which funded the CAN$40-million project include the United States Department of Energy, Saskatchewan Industry and Resources, Alberta Energy Research Institute and the European community. Industry participants include EnCana, BP, ChevronTexaco, Dakota Gasification Company, ENAA (Japan), Nexen, SaskPower, TransAlta and Total (France). Altogether, the project involved 24 research and consulting organizations in Canada, Europe and the United States.

During the study, researchers conducted a long-term risk assessment, completed geological and seismic studies, matched reservoir modeling against actual results, and performed repeated and frequent sampling to understand chemical reactions occurring in the reservoir.

"The Weyburn project is a prime example of innovative research in Saskatchewan that has global application," Saskatchewan Industry and Resources Minister Eric Cline said. "The work that has been done in Weyburn has enormous benefits for our growing oil industry and also represents a key contribution by our province to solving the challenges of climate change."

The IEA GHG Weyburn project’s most involved industry participant was EnCana Corporation of Calgary. "We are encouraged by the results," said Gerry Protti, EnCana’s Executive Vice-President of Corporate Relations. "At Weyburn, we are demonstrating every day that oil production can be enhanced in an environmentally responsible manner. We are pleased to have been part of this collaborative, international project involving industry, governments and researchers."

The Weyburn oil field has stored an estimated five million tonnes of CO2 over the IEA GHG project life -- equivalent to taking about one million cars off the road for one year. The CO2 is supplied through a 325-kilometre pipeline from Dakota Gasification Company’s coal-gasification plant at Beulah, North Dakota. "The IEA GHG Weyburn project is good news for addressing climate change because it proves that you can safely store 5,000 tonnes of CO2 per day in the ground rather than venting the greenhouse gas into the atmosphere," explained Malcolm Wilson, International Energy

Specialist with the PTRC and one of the founders of the project.

The Weyburn field was selected for the study because detailed geological records and core samples, as well as almost 50 years of production history, were readily available. Some 380 million barrels of oil have been produced from the field since it was discovered in 1954.

The IEA GHG Weyburn study was able to:

  • utilize seismic surveys to "see" the CO2 flow within the geological formations and mix with the oil reserves;
  • develop a model to predict the storage capacity of the reservoir and match results over time with the model;
  • predict in a risk-assessment model that most of the CO2 will remain in the reservoir in which it is injected, with a small amount sinking to even lower levels underground over the 5,000 years following the end of the project; and
  • conclude that the CO2 would never reach or penetrate overlying potable water zones or the atmosphere above ground level.

"Although we’re very excited with these conclusions, we believe there’s much more work to be done to determine how our techniques and systems can be applied from the Weyburn geological formation to other formations around the world, to make CO2 storage a real option for reducing our greenhouse gas emissions worldwide," Wilson said.

The Greenhouse Gas Control Technologies Conference, where the report was released, is the first international gathering of its kind ever held in Canada, drawing expert academics, scientists and policy-makers from around the world. The previous conference was held in Kyoto, Japan, in 2002.

The Government of Canada’s approach to climate change is focused on making the right choices for Canada. This will ensure that the actions taken contribute to the long-term goals of building a sustainable economy for the 21st century, a healthier environment and strong communities, while affirming Canada’s place in the world.

The Government of Canada contributed $6 million to this study. Funding for the initiative was provided for in the existing fiscal framework.

The Government of Saskatchewan contributed approximately $2.2 million to the project through the Saskatchewan Petroleum Research Incentive.

Joe Ralko | EurekAlert!
Further information:
http://www.ptrc.ca

More articles from Studies and Analyses:

nachricht Study relating to materials testing Detecting damages in non-magnetic steel through magnetism
23.07.2018 | Technische Universität Kaiserslautern

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>