Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Hyperspectral Imaging Endoscope: A New Tool For Non-Invasisve In Vivo Cancer Detection

10.08.2004


A newly designed endoscope, capable of providing sub-second polarized spectral images of tissue in vivo (in the body), allows physicians and surgeons to non-invasively survey and sample an entire area without actually removing tissue, and may offer hope as a new tool for detecting cancer early. Researchers from Cedars-Sinai Medical Center in Los Angeles and Carnegie Mellon University in Pittsburgh describe the instrument’s capabilities and clinical applications in the July 2004 issue of Progress in Biomedical Optics and Imaging.

The new device, named the Hyperspectral Imaging Endoscope (HSIE), is a standard medical endoscope enhanced with a customized imaging fiber. Working together with a camera, a laptop computer and a tunable light source covering the visible and near-infrared range, the HSIE system is capable of acquiring rapid spectral images of tissues, allowing physicians to non-invasively survey and sample an entire area of tissue in vivo (within the body). Compared to traditional biopsy where a small amount of tissue is removed and then examined in a laboratory, the HSIE system provides a non-contact method of gaining as much information as possible about an area without removing any tissue.

The system is relatively simple and based on the intrinsic properties of tissue and light, explains Daniel Farkas, Ph.D., Director of the Minimally Invasive Surgical Technologies Institute at Cedars-Sinai, and one of the study authors. “When light impacts tissue, it gives back a certain scattering pattern with spectral oscillations depending on the size of the scattering object. This pattern gives us a relatively quantitative idea whether or not a tissue area contains cancerous cells since the nuclei of cells in pre-cancerous and cancerous tissues are enlarged. The theory and spectroscopy have been beautifully worked out by our colleagues in Boston and Los Alamos, and we have now moved this type of investigation into the endoscopic imaging domain.”



The pilot study using the HSIE system involved examining epithelial tissue derived from lung cancer specimens. Currently the number one cause of cancer death worldwide, lung cancer is difficult to detect in its early stages and often isn’t found until after it has spread.

At the University of Pittsburgh Medical Center and Allegheny General Hospital, the two clinical sites where the first version of the HSIE instrument was tested, data were gathered from patients who had been treated previously for lung cancer and were to undergo an endoscopic examination to see if the cancer had returned. The area to be biopsied in the traditional way by the surgeon was first scanned using the HSIE, and then sent to the laboratory. The result of the pathological examination was then treated as “ground truth.” According to Dr. Farkas, there was a good correlation between the HSIE imaging and the pathologists’ diagnoses.

Based on the experience of physicians participating in the pilot study, Dr. Farkas anticipates that the medical community will embrace the new endoscope in its practices. “Physicians can use their own endoscope of choice exactly as they have before. By using this additional fiber, they’ll be able to have either two kinds of images on separate screens or overlay the spectrally classified image onto the regular image. In early acceptance stages, this could only guide biopsy, but as the matches with pathology are confirmed, the true diagnostic value of HSIE could be established.”

Dr. Farkas, a biophysicist and past Fulbright scholar, is the vice chair for research of Cedars-Sinai’s Department of Surgery as well as director of the Minimally Invasive Surgical Technologies Institute, which was formed in May 2002 to pursue the development and application of advanced technologies in surgery.

While epithelial tissue is the primary application, Dr. Farkas said the HSIE system can also be used for gastrointestinal investigations and maybe even for breast duct endoscopy.

“Surgery is clearly gravitating to the minimally invasive arena. The technology we employed in building the HSIE system gives us a great opportunity to improve a number of important components of surgical intervention. We are working now on an implementation using acousto-optic tunable filters, invented for hyperspectral satellite reconnaissance. It may sound like science fiction now, but I think we may ultimately be able to use the endoscope to not only detect cancers early, but to treat them using modalities such as localized photodynamic therapy, laser ablation or gene therapy. This closer coupling, spatially and temporally, between diagnosis and treatment may be the cornerstone of future surgical intervention.”

The study was funded by the National Institutes of Health (NCI Unconventional Innovation Program, N01-CO-07119), the National Science Foundation (Major Instrumentation Grant BESOO 79483) and the Pennsylvania Department of Health (Commonwealth Universal Research Enhancement program, Tobacco Settlement Act 77-2001).

Sandra Van | Cedars-Sinai Media
Further information:
http://www.csmc.edu

More articles from Studies and Analyses:

nachricht Self-organising system enables motile cells to form complex search pattern
07.05.2019 | Westfälische Wilhelms-Universität Münster

nachricht Mouse studies show minimally invasive route can accurately administer drugs to brain
02.05.2019 | Johns Hopkins Medicine

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

Im Focus: Cost-effective and individualized advanced electronic packaging in small batches now available

Fraunhofer IZM is joining the EUROPRACTICE IC Service platform. Together, the partners are making fan-out wafer level packaging (FOWLP) for electronic devices available and affordable even in small batches – and thus of interest to research institutes, universities, and SMEs. Costs can be significantly reduced by up to ten customers implementing individual fan-out wafer level packaging for their ICs or other components on a multi-project wafer. The target group includes any organization that does not produce in large quantities, but requires prototypes.

Research always means trying things out and daring to do new things. Research institutes, universities, and SMEs do not produce in large batches, but rather...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Concert of magnetic moments

14.06.2019 | Information Technology

Materials informatics reveals new class of super-hard alloys

14.06.2019 | Materials Sciences

New imaging modality targets cholesterol in arterial plaque

14.06.2019 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>