Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fluid derived from aloe plant prolongs life after hemorrhagic shock in animal study

27.07.2004


Results suggest the fluid could increase survival in trauma patients and wounded soldiers



A novel resuscitation fluid derived from aloe vera that was developed by researchers at the University of Pittsburgh’s McGowan Institute for Regenerative Medicine has the potential to save the lives of patients with massive blood loss, according to results of an animal study published in the August edition of the medical journal Shock. The findings could have a significant impact on the treatment of hemorrhagic shock caused by both civilian and military trauma.
In a rodent model of hemorrhagic shock, animals that were given a very small amount of the fluid, an aloe vera-derived drag reducing polymer (DRP), had significantly longer survival time and increased systemic whole body oxygen consumption, even in the absence of resuscitation with blood or other fluids, compared to animals that did not receive DRP.

"We hope this fluid will offer a viable solution to a significant problem, both on and off the battlefield. Typically, hemorrhagic shock is treated by controlling ongoing bleeding and restoring blood volume by infusing a lactate solution and packed red blood cells. Soldiers wounded in combat often lose significant amounts of blood, and there is no practical way to replace the necessary amount of blood fast enough on the front lines. When this happens, there is inadequate perfusion of the organs which quickly leads to a cascade of life-threatening events," said senior author Mitchell P. Fink, M.D., professor and chair, department of critical care medicine and Watson Professor of Surgery at the University of Pittsburgh School of Medicine.



"Medics would need only to carry a small amount of this solution, which could feasibly be administered before the soldier is evacuated to a medical unit or facility," he added.

The central ingredient of Pitt’s resuscitation fluid comes from the slick substance inside the leaves of the aloe vera plant. A so-called mucilage, it is rich in polysaccharides and has a high molecular mass and specific "visco-elastic" properties that allow it to reduce resistance to turbulent flow when added to a fluid at minute concentrations.

"As a drag reducing polymer, it may provide better diffusion of oxygen molecules from red blood cells to tissues because of its ability to better mix in the plasma surrounding red blood cells," explained Marina Kameneva, Ph.D., research associate professor of surgery and bioengineering, University of Pittsburgh, and director of the Artificial Blood Program at the McGowan Institute, who developed the fluid and has been researching its potential for the past several years.

In the current study, lead by Carlos A. Macias, M.D., a visiting research associate in the department of critical care medicine at the University of Pittsburgh’s School of Medicine, five of 10 rats that were injected with a small amount of a normal saline solution survived four hours after hemorrhagic shock. Of the animals treated with a same amount of saline and the aloe-derived DRP, eight of 10 survived. The animals treated with DRP also fared better in another experiment involving more severe blood loss; five of 15 survived the two-hour observation period, compared to one of 14 treated with saline solution alone. Seven animals receiving no treatment all died within 35 minutes.

According to the Department of Health and Human Services, trauma is the leading cause of death for those under the age of 40. In the United States, traumatic injuries result in approximately 150,000 deaths per year; complications resulting from the loss of large amounts of blood account for almost half these deaths.

In addition to Drs. Fink, Kameneva and Macias, authors of the study are Jyrki J. Tenhunen, M.D., Ph.D., visiting research associate in the department of critical care medicine at the University of Pittsburgh’s School of Medicine; and Juan-Carlos Puyana, M.D., associate professor of critical care medicine and surgery at Pitt and critical care director of the trauma/surgery intensive care units at the University of Pittsburgh Medical Center.

Jocelyn Uhl | EurekAlert!
Further information:
http://www.upmc.edu

More articles from Studies and Analyses:

nachricht Study relating to materials testing Detecting damages in non-magnetic steel through magnetism
23.07.2018 | Technische Universität Kaiserslautern

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>