Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

URI oceanographer studies seasonal changes in coastal ’jet’ south of Block Island

23.07.2004


University of Rhode Island Graduate School of Oceanography physical oceanographer David Ullman and University of Connecticut physical oceanographer Dan Codiga have studied the processes giving rise to a coastal current jet that forms in the Atlantic Ocean south of Block Island. Although the commonly accepted scientific view has been that the flow along the southern New England continental shelf is steady on seasonal timescales, recent collection and analysis of long-term current records as part of a National Oceanographic Partnership Program project carried out by URI and UCONN researchers suggests a contrary view.



In their study, published in the current issue of the Journal of Geophysical Research, Ullman and Codiga use two years of current measurements from shore-based radar and in-water current profilers to describe the properties of the jet. The jet flows southwestward along the frontal boundary that separates the low salinity water emanating from Long Island Sound from open ocean water. By averaging the currents over monthly periods to filter out tidal and storm-driven effects, they found a striking seasonal variability, whereby the jet was most intense during summer and extremely weak in winter.

Analysis of water properties and meteorological data in the region showed that the variability of the jet arises from the interplay of freshwater outflow from estuaries and wind stress. Due to the earth’s rotation, outflows along the southern New England continental shelf, which are strongest in spring, produce westward flow. The predominantly eastward winds in this region, on the other hand, tend to drive eastward currents and this wind-driven flow is strongest in winter. The combined effect of these two forcing mechanisms produces strong westward flow when the outflow effect dominates during summer and weak flow when the two processes balance during winter. The winter weakening of the alongshore current jet is hypothesized to be associated with increased offshore transport of nearshore waters. The current mapping radars deployed for this study continue to operate from shoreline sites in Rhode Island and New York, providing a new capability to monitor coastal circulation in real-time over long time periods.


"In addition to the scientific returns from this observational program, the routine monitoring of surface currents is expected to have considerable societal impact, especially in the realm of coastal search and rescue operations," said Ullman. "The use of real-time currents by U. S. Coast Guard search and rescue planning teams will significantly improve their ability to predict the trajectories of drifting boats or persons at sea."

Lisa Cugini | EurekAlert!
Further information:
http://www.uri.edu

More articles from Studies and Analyses:

nachricht Drought hits rivers first and more strongly than agriculture
06.09.2018 | Max-Planck-Institut für Biogeochemie

nachricht Landslides triggered by human activity on the rise
23.08.2018 | European Geosciences Union

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

Nanocages in the lab and in the computer: how DNA-based dendrimers transport nanoparticles

19.10.2018 | Life Sciences

Thin films from Braunschweig on the way to Mercury

19.10.2018 | Physics and Astronomy

App-App-Hooray! - Innovative Kits for AR Applications

19.10.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>