Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MRI Technique Used to Detect Early Signs of Multiple Sclerosis

19.07.2004


An innovative study at Robarts Research Institute provides early evidence that hospital MRI scanners can be used to detect distinct brain cell abnormalities that are predictors of multiple sclerosis (MS).



In a preclinical study in rats with a disease similar to the human form, Robarts scientist Dr. Paula Foster used an injection of nano-particles of iron oxide, which exhibit magnetic qualities and can be detected by an MRI scanner.

During the acute inflammatory phase of the disease, these particles were then picked up by circulating inflammatory cells (leukocytes) that went on to infiltrate brain tissue and cause abnormalities called perivascular cuffs.


These abnormalities -- seen in this study for the first time using MRI -- can be used to predict the occurrence of multiple sclerosis (MS) lesions. The results of the study, co-authored by Ayman Oweida and Beth Dunn, are featured on the cover of the latest issue of the scientific journal Molecular Imaging.

“Our collaborative research projects in molecular imaging at Robarts -- in traumatic spinal cord injury, diabetes, tumor cell tracking and MS -- are yielding very promising results,” said Dr. Foster, whose study used a novel micro-imaging system fitted to the MRI scanner at London Health Sciences Centre that was developed and built in collaboration with Dr. Brian Rutt, also a Robarts scientist, and colleague Andrew Alejski, an electrical engineer. “The ultimate goal of this work is to be able to give clinicians new ways to see and treat disease at the earliest possible stage.”

Molecular imaging, a branch of “nano-medicine”, is an emerging field that aims to advance understanding in biology and medicine by capturing non-invasive images of important cellular and molecular events during the onset, progression and treatment of disease. Last year, Drs. Foster and Rutt, published the first evidence that individual cells could be detected using 1.5 Tesla MRI scanners, which are found in thousands of hospitals around the world.

Although molecular imaging is in its formative stages (this September, for example, marks only the 3rd annual meeting of the Society for Molecular Imaging), targeting molecular processes will allow earlier detection and characterization of disease, direct assessment of treatment effects and better understanding of disease processes in living tissues. This represents a profound shift in the overall purpose of medical imaging, to provide more of physiological and functional information vs. the conventional “structural-anatomic” approach practiced by radiologists.

“It is an exciting thought to consider the imaging and detection of ‘pre-disease’ states at a time when intervention may provide more effective therapy,” said Dr. Foster, who is also an assistant professor in the Department of Medical Biophysics at The University of Western Ontario.

| newswise
Further information:
http://www.robarts.ca

More articles from Studies and Analyses:

nachricht Climate change and air pollution damaging health and causing millions of premature deaths
30.11.2018 | International Institute for Applied Systems Analysis (IIASA)

nachricht Reading rats’ minds
29.11.2018 | Institute of Science and Technology Austria

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

Inaugural "Virtual World Tour" scheduled for december

28.11.2018 | Event News

 
Latest News

A new molecular player involved in T cell activation

07.12.2018 | Life Sciences

High-temperature electronics? That's hot

07.12.2018 | Materials Sciences

Supercomputers without waste heat

07.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>