Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brightness discrimination in the dog

30.06.2004


Dogs’ ability to discriminate brightness is about half as good as that of humans, according to a study appearing in Volume 4, Issue 3 in the Journal of Vision. In research conducted by scientists from the Veterinary University of Vienna and the University of Memphis, dogs showed a surprising lack of ability to discriminate between grey cards that varied in brightness, says researcher Ulrike Griebel of the University of Memphis.



While a great deal is known about dogs’ visual acuity and the cellular components of their eyes, there is a paucity of information about their ability to discriminate brightness, says Griebel. Furthermore, she notes that there is relatively little information on how well other animals discriminate brightness.

The researchers tested three police dogs--two Belgian shepherds and a German shepherd. The dogs faced a series of pairs of grey squares, which differed in brightness. The task required the dog to determine how much the one square differed in brightness from the other. The correct choice was rewarded with a food treat. The dogs needed a far greater difference in brightness (known as the Weber fraction) than do humans to discriminate between two squares.


For the Belgian shepherds the Weber fraction was 0.27; for the German shepherd it was 0.22. Although the researchers did not test humans in their study, previous studies found that humans need a Weber fraction of 0.14 to be able to discern a brightness difference.

While there has been little research into brightness discrimination in animals, says Griebel, what has been found is surprising. Dogs are arrhythmic animals, meaning they are active during both day and night. Consequently, it would be expected that they would have a high level of brightness discrimination. Brightness would be an important cue for such animals. Like dogs, says Griebel, sea lions, a species of manatee, and the horse--all arrhythmic animals--are quite inferior to humans in the ability to discriminate brightness. Humans are diurnal animals--active primarily during daylight.

Griebel hypothesizes that the relatively poor brightness discrimination ability of these arrhythmic animals represents a compromise. Because their visual systems have to operate under a wide range of light conditions, something has to be given up. She says this idea is an initial supposition, and that more study is needed to arrive at a firmer conclusion. This research helps to show that dogs’ perceptual world is very different from ours, and that we cannot expect the same thing from them that we expect from ourselves.

Karen Schools Colson | EurekAlert!
Further information:
http://www.memphis.edu
http://www.arvo.org

More articles from Studies and Analyses:

nachricht Self-organising system enables motile cells to form complex search pattern
07.05.2019 | Westfälische Wilhelms-Universität Münster

nachricht Mouse studies show minimally invasive route can accurately administer drugs to brain
02.05.2019 | Johns Hopkins Medicine

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

A new force for optical tweezers awakens

19.06.2019 | Physics and Astronomy

New AI system manages road infrastructure via Google Street View

19.06.2019 | Information Technology

A new manufacturing process for aluminum alloys

19.06.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>