Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biofilm of Salmonella

21.06.2004


Advances in the study of the salmonella bacteria, being undertaken at the Pamplona Institute of Agrobiotechnology and Natural Resources and led by professor Iñigo Lasa Uzcudun of the Public University of Navarre, have been recognised in the principal international magazine in the field of Microbiology, Molecular Microbiology, at a congress held recently in the German city of Heidelberg.

The Navarre researchers are analysing the role that a new family of Salmonella typhimurium proteins play in the biosynthesis of cellulose and in the formation of the biofilm of the salmonella bacteria.

Biofilms



The presence of biofilms is commonplace in nature. Who has not seen the mucous material on the inside of a vase after we have had flowers there some time, the slimy substance covering stones on riverbeds ... these are biofilms. The capacity for biofilm formation does not appear to be restricted to any one specific group of micro-organisms and, nowadays, it is believed that, if the environmental conditions are right, all micro-organisms are able to form biofilms.

Although the composition of biofilm is variable depending on the system under study, in general the main component of biofilm is water – as much as 97% of the total content. Apart from water and the bacterian cells, the biofilm matrix is a complex formed principally by exopolysacharrides.

Bacterian and infectious biofilms

Currently, with chronic infections such as those related to medical implants or other chronic conditions such as otitis media, pneumonia or chronic urinary infections, amongst others, direct analysis of the infected implants and tissues clearly show that the bacteria responsible for the infection grows adhering to the tissue or implant, producing biofilms.

The bacteria are protected, inside the biofilm, from the action of antibodies from attack by phagocytic cells and from antimicrobian treatment. Thus, they do not respond suitably to antibiotic treatament and produce recurrent episodes with the result that, in most cases, the only solution is the substitution of an implant. This is because the bacterias in the biofilm can be up to 1000 times more resistant to antibiotics than these same bacteria grown in a liquid medium.

In the last five years, many research groups have directed their efforts to identifying the genes responsible for the formation of the biofilms and those genes required to maintain the structure of the biofilm. In order to identify these genes, there has been a recent development in genomics and proteomics that has resulted in many of these groups are using microarrays or proteomic techniques for identifying the genes that express themselves in a different way in biofilm conditions or planktonic conditions, even though we are dealing with the same bacteria. Amongst these genes, a great proportion of genes are repeatedly found the function of which is unknown, which points to the existence of genes specific to the biofilm lifestyle and the phenotype of which has not been possible to visualise to date.

It is precisely on the Salmonella and Staphylococcus bacteria that Professor Lasa Uzkudun’s research group has been carrying studies. They have discovered a new family of proteins related to the formation of biofilms and which have been unidentified to date. This group of proteins may well explain the mechanism of the biofilm when colonising new surfaces, the method of adhering to different media, the regulation of the process of biofilm formation, etc., given that some of the discovered proteins have a precursor function in the formation of the biofilm.

Finally, it would appear logical that the formation of the biofilm be produced in response to the ambient conditions and so exist systems that transmit the signal for the surrounding environment to the interior of the bacteria in order to suit the expression of the genes to the new environment. Even so, despite all that has been learned in recent years about bacterian biofilms, what is the “Biofilm” phenotype still remains to be defined exactly. Only then can it be determined what are the physiological changes which take place therein and what are the genetic requirements and regulation mechanisms of such a process.

Iñaki Casado Redin | Basque research
Further information:
http://www.unavarra.es

More articles from Studies and Analyses:

nachricht Self-organising system enables motile cells to form complex search pattern
07.05.2019 | Westfälische Wilhelms-Universität Münster

nachricht Mouse studies show minimally invasive route can accurately administer drugs to brain
02.05.2019 | Johns Hopkins Medicine

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

A new force for optical tweezers awakens

19.06.2019 | Physics and Astronomy

New AI system manages road infrastructure via Google Street View

19.06.2019 | Information Technology

A new manufacturing process for aluminum alloys

19.06.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>