Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Environmental toxins can cause a model of Parkinson’s disease in rats

21.06.2004


Scientists have induced a movement disorder in rats that closely resembles Parkinson’s disease in humans. The study, published June 21, 2004, in the online edition of the Annals of Neurology, suggests that natural toxins found in the environment could contribute to the development of this debilitating movement disorder. The full study will be available via Wiley InterScience.

The compounds, called proteasome inhibitors, can be produced by bacteria and fungi. Man-made proteasome inhibitors may also find their way into the environment.

"These results suggest that we should determine how widespread these toxins are in the environment, how humans are exposed to them, and how such exposures correlate with the incidence of Parkinson’s disease," said lead author Kevin St. P. McNaught, PhD, of the Mount Sinai School of Medicine in New York City.



Ironically, proteasome inhibitors are currently being used as a treatment for cancer.

Parkinson’s disease afflicts up to a million Americans. Symptoms can include slowness of movement, tremor when at rest, muscle rigidity abnormalities of gait. Parkinson’s symptoms can be traced to the progressive death of nerve cells, most prominently in an area of the brain called the substantia nigra accompanied by a loss of the brain chemical dopamine.

What kills the nerve cells in Parkinson’s is not known, but it is suspected that the majority of cases are related to environmental factors that could include exposure to toxins.

Several animal models of Parkinson’s disease exist, but none recapitulate the features of the disease as closely as the present model, said C. Warren Olanow, M.D., Ph.D., chair of neurology at Mount Sinai, and a co-author of the study.

Proteasomes are responsible for eliminating abnormal proteins from cells, acting like a garbage disposal system. Based on growing evidence that proteasomes are defective in Parkinson’s disease, McNaught and colleagues examined the effects of experimentally interfering with proteasomes in laboratory rats, using both man-made and naturally occurring proteasome inhibitors.

About two weeks after receiving injections of proteasome inhibitors, the rats began to show symptoms similar to Parkinson’s disease, including slowness of movement, rigidity, and tremor. "These symptoms gradually worsened over a period of months, and could be reversed with drugs that are used to treat Parkinson’s patients," said McNaught.

Imaging studies of the living animals’ brains demonstrated changes in a pattern identical to that seen in Parkinson’s disease. Similarly, autopsy studies on the animals’ brains demonstrated a reduction in brain levels of dopamine and nerve cell loss in a pattern that closely resembled Parkinson’s disease.

"We create animal models of a disease for several reasons," said Dr. Olanow. "We can use the model to find underlying mechanisms responsible for the disease, identify targets for drug development, and test any new therapies. Our present model should facilitate accomplishing these goals in Parkinson’s disease."

McNaught notes that epoxomicin, one of the most potent proteasome inhibitors known, is produced by the common actinomycetes bacteria, which is found in soil and well water throughout the world.

"It’s only speculation at this point, but the fact that living in rural areas and drinking well water has been reported to be associated with higher rates of Parkinson’s disease could be related to higher levels of proteasome inhibitors found in these areas" said Dr. Olanow.

David Greenberg | EurekAlert!
Further information:
http://www.wiley.com
http://www.interscience.wiley.com

More articles from Studies and Analyses:

nachricht Statistical method developed at TU Dresden allows the detection of higher order dependencies
07.02.2020 | Technische Universität Dresden

nachricht Novel study underscores microbial individuality
13.12.2019 | Bigelow Laboratory for Ocean Sciences

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: High-pressure scientists in Bayreuth discover promising material for information technology

Researchers at the University of Bayreuth have discovered an unusual material: When cooled down to two degrees Celsius, its crystal structure and electronic properties change abruptly and significantly. In this new state, the distances between iron atoms can be tailored with the help of light beams. This opens up intriguing possibilities for application in the field of information technology. The scientists have presented their discovery in the journal "Angewandte Chemie - International Edition". The new findings are the result of close cooperation with partnering facilities in Augsburg, Dresden, Hamburg, and Moscow.

The material is an unusual form of iron oxide with the formula Fe₅O₆. The researchers produced it at a pressure of 15 gigapascals in a high-pressure laboratory...

Im Focus: From China to the South Pole: Joining forces to solve the neutrino mass puzzle

Study by Mainz physicists indicates that the next generation of neutrino experiments may well find the answer to one of the most pressing issues in neutrino physics

Among the most exciting challenges in modern physics is the identification of the neutrino mass ordering. Physicists from the Cluster of Excellence PRISMA+ at...

Im Focus: Therapies without drugs

Fraunhofer researchers are investigating the potential of microimplants to stimulate nerve cells and treat chronic conditions like asthma, diabetes, or Parkinson’s disease. Find out what makes this form of treatment so appealing and which challenges the researchers still have to master.

A study by the Robert Koch Institute has found that one in four women will suffer from weak bladders at some point in their lives. Treatments of this condition...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Scientists develop algorithm for researching evolution of species with WGD

26.02.2020 | Information Technology

MOF co-catalyst allows selectivity of branched aldehydes of up to 90%

26.02.2020 | Life Sciences

Structural framework for tumors also provides immune protection

26.02.2020 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>