Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Harmless Virus Helps Slow HIV by Boosting Immune Proteins

18.06.2004


Iowa City Veterans Affairs (VA) Medical Center and University of Iowa (UI) researchers have unlocked part of the mystery of how a harmless virus known as GBV-C slows the progression of HIV and prolongs survival for many patients. The report appears in the June 19 issue of The Lancet, the leading British medical journal.

The findings provide the clearest insight yet into the biological mechanisms of GBV-C, a benign cousin of the hepatitis C virus. The virus infects almost all HIV patients at some point in their illness, but seems to cause no harm by itself. When present over several years, the virus appears to slow HIV growth and keep patients from developing full-blown AIDS.

A study by the Iowa City team and other collaborators published in the March 4, 2004, New England Journal of Medicine found that 75 percent of men with persistent GBV-C infection survived at least 11 years after their HIV diagnosis, versus only 16 percent of men who were initially co-infected with GBV-C but cleared the virus over time. The men had been studied before the advent of effective HIV medications.



In the new study, the Iowa City scientists infected white blood cells with GBV-C and HIV and compared them to cells infected only with HIV. The cells with GBV-C showed an increase in certain chemokines, or immune-system proteins. These proteins bind to the same white-blood-cell receptors-molecular “docking sites”-used by HIV. When the receptors aren’t available, HIV is unable to infect the cells.

When the researchers neutralized the chemokines with antibodies, GBV-C had no protective effect. HIV was free to enter host cells and proliferate.

“The next thing we have to do is determine a way to mimic the effect of this virus [GBV-C] and learn how to make it persist, so it can continue to induce these chemokines and these changes in the cell that help HIV,” said senior investigator Jack Stapleton, MD of VA and UI. Lead author was Jinhua Xiang, MD, who works with Stapleton at the Iowa City VA Medical Center.

GBV-C is related to the virus that causes hepatitis C. However, it does not infect liver cells, and causes no form of hepatitis. Rather, like HIV, it infects white blood cells-specifically, helper T cells. It is also contracted in the same way as HIV-through bodily fluids. About 10 to 15 percent of healthy blood donors either have active GBV-C infection or antibodies indicating past exposure. Almost 90 percent of people with HIV, according to some studies, show evidence of having been infected with GBV-C, but about half of these patients develop antibodies that knock the virus out of their system.

GBV-C was first identified by scientists in 1995, though studies suggest it has been around since ancient times. The idea that GBV-C may delay HIV disease progression and lower mortality has been debated among AIDS scientists because of mixed research findings. Ten studies, by eight different groups of researchers, including Stapleton’s, have shown improved survival or other clinical benefits among HIV patients who also have GBV-C. A few studies, though, showed no benefit.

The March 2004 study in the New England Journal of Medicine, co-authored by Stapleton and led by Carolyn Williams, PhD of the National Institute of Allergy and Infectious Diseases, was the most comprehensive GBV-C study to date. According to Stapleton, it showed that the duration of GBV-C infection may be critical in increasing survival, and this may help explain why other studies failed to find any effect.

“The survival advantage of GBV-C appears to depend on how long the GBV-C infection persists,” said Stapleton, a staff physician at the Iowa City VA Medical Center and professor of medicine at UI.

According to the new findings by Stapleton and Xiang’s team, GBV-C raises the blood levels of several chemokines, including one called RANTES (an acronym for “regulated on activation, normal T cell expressed and secreted”). This protein naturally occupies the same molecular docking site favored by HIV-a receptor called CCR5-and thus keeps the AIDS virus from binding to white blood cells and gaining a foothold in the body.

Drugs are under development that mimic the effect of these chemokines. However, Stapleton believes GBV-C itself should be seen as a potential HIV treatment because of its safety profile and because patients would need only a limited number of exposures to see benefits. He and his colleagues are now considering a clinical trial in which HIV patients would be infected with the virus.

“The fact that GBV-C is such a common infection, and that’s it’s been so extensively studied and not shown to cause any diseases, distinguishes it from other live viruses and makes it a more realistic option,” said Stapleton. He pointed out that the Food and Drug Administration does not require blood donations to be screened for GBV-C, even though about 1 in 70 units of blood in the United States contains the virus.

Currently there is only one medication available, Fuzeon, that blocks HIV at the early stage of the virus’ replication, before it even enters T cells. But this drug costs up to $25,000 per year and must be given by injection twice daily. Other drugs that work similarly are under development.

While many HIV patients today are helped by highly active antiretroviral therapy, or HAART, many become resistant to the drugs. Stapleton said the effect of GBV-C on HIV viral load is similar to that of HAART, though not as potent. The likelihood of resistance, however, is much lower with GBV-C.

“HIV probably doesn’t become resistant to GBV-C very easily, but it is possible to lose the virus,” said Stapleton. “We have to figure out how this can be prevented.”

Collaborating with Stapleton and Xiang on the study were Drs. Sarah George and Sabina Wunschmann, along with Qing Chang and Donna Klinzman. The work, presented in part in 2003 at the Tenth Conference on Retroviruses and Opportunistic Infections, was funded by VA, the National Institutes of Allergy and Infectious Diseases, the UI Center for Research Enhancement, and the UI Gene Therapy Center.




| newswise
Further information:
http://www.uiowa.edu

More articles from Studies and Analyses:

nachricht Self-organising system enables motile cells to form complex search pattern
07.05.2019 | Westfälische Wilhelms-Universität Münster

nachricht Mouse studies show minimally invasive route can accurately administer drugs to brain
02.05.2019 | Johns Hopkins Medicine

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

Im Focus: Cost-effective and individualized advanced electronic packaging in small batches now available

Fraunhofer IZM is joining the EUROPRACTICE IC Service platform. Together, the partners are making fan-out wafer level packaging (FOWLP) for electronic devices available and affordable even in small batches – and thus of interest to research institutes, universities, and SMEs. Costs can be significantly reduced by up to ten customers implementing individual fan-out wafer level packaging for their ICs or other components on a multi-project wafer. The target group includes any organization that does not produce in large quantities, but requires prototypes.

Research always means trying things out and daring to do new things. Research institutes, universities, and SMEs do not produce in large batches, but rather...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Concert of magnetic moments

14.06.2019 | Information Technology

Materials informatics reveals new class of super-hard alloys

14.06.2019 | Materials Sciences

New imaging modality targets cholesterol in arterial plaque

14.06.2019 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>