Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nasa Data Shows Hurricanes Help Plants Bloom In "Ocean

18.06.2004


Whenever a hurricane races across the Atlantic Ocean, chances are phytoplankton will bloom behind it. According to a new study using NASA satellite data, these phytoplankton blooms may also affect the Earth’s climate and carbon cycle.

Dr. Steven Babin, a researcher at the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., studied 13 North Atlantic hurricanes between 1998 and 2001. Ocean color data from the SeaWiFS instrument on the SeaStar satellite were used to analyze levels of chlorophyll, the green pigment in plants. The satellite images showed tiny microscopic ocean plants, called phytoplankton, bloomed following the storms.

"Some parts of the ocean are like deserts, because there isn’t enough food for many plants to grow. A hurricane’s high winds stir up the ocean waters and help bring nutrients and phytoplankton to the surface, where they get more sunlight, allowing the plants to bloom," Babin said.



Previous research has relied largely on sporadic, incomplete data from ships to understand how and when near-surface phytoplankton bloom. "This effect of hurricanes in ocean deserts has not been seen before. We believe it is the first documented satellite observation of this phenomenon in the wake of hurricanes," Babin noted. "Because 1998 was the first complete Atlantic hurricane season observed by this instrument, we first noticed this effect in late 1998 after looking at hurricane Bonnie," Babin said.

The study found the physical make-up of a storm, including its size, strength and forward speed, is directly related to the amount of phytoplankton that blooms. Bigger storms appear to cause larger phytoplankton blooms. Larger phytoplankton should have more chlorophyll, which satellite sensors can see.

Hurricane-induced upwelling, the rising of cooler nutrient- rich water to the ocean surface, is also critical in phytoplankton growth. For two to three weeks following almost every storm, the satellite data showed phytoplankton growth. Babin and his colleagues believe it was stimulated by the addition of nutrients brought up to the surface.

Whenever the quantity of plants increases or decreases, it affects the amount of carbon dioxide in the atmosphere. As phytoplankton grow, they absorb carbon dioxide, a heat- trapping greenhouse gas. The gas is carried to the ocean floor as a carbon form when the tiny plants die. This enables atmospheric carbon to get into the deep ocean. It is one of several natural processes that contribute to Earth’s carbon cycle.

By stimulating these phytoplankton blooms, hurricanes can affect the ecology of the upper ocean. Phytoplankton is at the bottom of the food chain. The factors that influence their growth also directly affect the animals and organisms that feed on them. In addition, since climate-related phenomena like El NiÒo may change the frequency and intensity of hurricanes, storm-induced biological activity may have even greater contributions to future climate change.

Scientists are still trying to determine how much carbon dioxide might be removed from such a process. "Better knowledge of the carbon cycle will improve our understanding of global ecology and how climate change might affect us," Babin said.

The research appeared as a paper in a recent issue of the Journal of Geophysical Research-Oceans. Study co-authors include J.A. Carton, University of Maryland, College Park, Md.; T.D. Dickey, Ocean Physics Laboratory, University of California, Santa Barbara, Calif.; and J.D. Wiggert, Center for Coastal Physical Oceanography, Old Dominion University, Norfolk, Va.

NASA’s Earth Science Enterprise funded part of the research. The Enterprise is dedicated to understanding the Earth as an integrated system and applying Earth System Science to improve climate, weather, and natural hazard prediction using the unique vantage point of space.

Rob Gutro/Mike Bettwy | NASA
Further information:
http://www.nasa.gov

More articles from Studies and Analyses:

nachricht Study relating to materials testing Detecting damages in non-magnetic steel through magnetism
23.07.2018 | Technische Universität Kaiserslautern

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>