Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Elusive but ubiquitous microbe fingered as gum disease culprit in Stanford study

23.04.2004


Even biology majors may not have heard much about archaea. Along with bacteria and eukarya (which encompass every organism from fungi to mammals), the elusive microbes make up one of the three domains of life. Now researchers at the Stanford University School of Medicine have for the first time tied a specific disease to one of these unfamiliar organisms.



"It’s not surprising that no one has really heard about them; archaea have still not even penetrated mainstream biology textbooks," said David Relman, MD, associate professor of medicine (infectious diseases) and of microbiology and immunology. There are, however, at least as many of them as there are bacteria, he said.

Archaea look a lot like bacteria, but appearances can be deceiving. Genetically and biochemically they are as different from bacteria as bacteria are from humans. The microbes live in many extreme environments - from hot springs to salt lakes to submarine volcanoes - but also within animals, including the human colon, vagina and mouth.


"To me it is one of those fundamental puzzles: they are everywhere and, given that we must be exposed to them somewhat frequently, if not all the time, why is it that we can’t name one disease-causing member of this enormous domain?" Relman wondered. He and his group at the Veterans Affairs Palo Alto Health Care System have shown a never-before-known connection between the abundance of archaea and the severity of a human gum disease called periodontitis.

Chronic periodontitis, which affects about one-third of Americans, may result in tooth loss and is thought to play a role in a range of conditions including atherosclerosis, stroke and early delivery of low birth-weight infants. While there is a general consensus that bacteria play a role in gum disease, no single microbe has been implicated as the culprit.

Relman and members of his lab embarked on a comprehensive, controlled study of the archaea found in the subgingival crevice - the deep gap between the gums and teeth - where periodontitis begins. They rigorously analyzed samples from 58 patients’ mouths taken by their collaborator, Gary Armitage, DDS, at the UC-San Francisco School of Dentistry, and found that more than one-third of the periodontitis patients had archaea in their diseased subgingival spaces, but nowhere else in their mouths. In addition, the relative abundance of archaea correlated with disease severity. Their findings are published in this week’s issue of the Proceedings of the National Academy of Sciences.

"Of course we’d ultimately like to say archaea caused disease, but it’s a horse-and-cart problem right now because we haven’t shown that the archaea come before the disease," Relman said. In the future, he noted, they will collect specimens repeatedly from the same spot in the subgingival pocket in hopes of being able to pinpoint the moment when the archaea start to increase in number and then determine whether that predicts the later development of the disease.

The paper’s first author, Paul Lepp, PhD, research associate in microbiology and immunology, explained that while a third of the periodontitis sufferers harbored archaea, many of the others had high levels of bacteria that - like archaea - consume hydrogen. Hydrogen consumption creates a more hospitable environment for bacteria long known to play a role in gum disease.

The group speculates that archaea may not directly cause periodontal disease. Rather, the microbes may indirectly contribute to it by helping other organisms - in this case, gum-damaging bacteria - grow more productively. Lepp said they are now looking for other hydrogen consumers to test their theory.

"In my mind, it’s increasingly clear that the disease may be the result of a community disturbance rather than the presence or absence of a particular organism," Relman said.

Relman also sees a potentially broader side to this research. "Maybe we should look a little harder for evidence of archaea as promoting or causing other diseases. We certainly have them in our bodies and we are exposed to them, so the archaea have the opportunity to cause disease if they are capable of doing so. We haven’t been looking for them so we wouldn’t know."


Other Stanford researchers involved in this study include graduate student Mary Brinig and postdoctoral scholar Cleber Ouverney, PhD, in microbiology and immunology, and research assistant Katherine Palm, in the division of infectious diseases and geographic medicine. This study was funded by a grant from the National Institute of Dental and Craniofacial Research, one of the National Institutes of Health, along with grants from the Ellison Medical Foundation and the University Exploratory Research Program of Procter & Gamble.

Stanford University Medical Center integrates research, medical education and patient care at its three institutions - Stanford University School of Medicine, Stanford Hospital & Clinics and Lucile Packard Children’s Hospital at Stanford. For more information, please visit the Web site of the medical center’s Office of Communication & Public Affairs at http://mednews.stanford.edu.

Mitzi Baker | EurekAlert!
Further information:
http://mednews.stanford.edu

More articles from Studies and Analyses:

nachricht Study relating to materials testing Detecting damages in non-magnetic steel through magnetism
23.07.2018 | Technische Universität Kaiserslautern

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>