Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Green and black tea polyphenols consumption results in slower prostate cancer cell growth

19.04.2004


In the first known study of the absorption and anti-tumor effects of green and black tea polyphenols in human tissue, researchers at the University of California at Los Angeles were able to detect tea polyphenols in prostate tissue after a very limited consumption of tea.



More importantly, the scientists found that prostate cancer cells grew more slowly when placed in a medium containing blood serum of men who had consumed either green or black tea for five days compared to serum collected before the men began their tea-drinking regimen. Serum from men who drank comparable amounts of diet or regular soda showed no such slowing in cancer cell proliferation.

The study was reported at Experimental Biology 2004, in Washington, D.C., as part of the scientific program of the American Society of Nutritional Sciences, one of the six sponsoring scientific societies of this large multi-disciplinary meeting.


Recent animal and epidemiological studies have suggested tea may have anti-tumor effects against carcinoma of the prostate, and many of the polyphenolic components of tea have been found in the prostate and many other tissues in rats and mice after chronic consumption of green tea polyphenols in drinking water.

Dr. Susanne Henning, UCLA Center for Human Nutrition, says the UCLA research team - a combination of nutrition scientists and urologists - focused on the possible effect of tea polyphenols on factors named polyamines and the enzymes responsible for the production of polyamines. Elevated levels of polyamines have been associated with malignancy in humans, including prostate cancer, and - since polyamines are present in prostate tissue in high concentration - are considered a logical target for chemoprevention of prostate cancer.

Five days before they were to undergo radical prostatectomy, 20 men with prostate cancer were randomly assigned to consume daily either five cups of green tea, five cups of black tea, or diet or regular soda containing no tea polyphenols. Their blood serum was then collected and added to prostate tissue samples from a commercially available prostate cancer cell line called LNCaP.

Analysis of the prostate tissue showed a large variation in tea polyphenol content between study participants. Tea polyphenols were found in six out of eight participants drinking green tea, seven out of seven drinking black tea, and two out of five drinking soda. The fact that two of the control participants showed polyphenols in the prostate sample might be because they were eating chocolate regularly or drinking tea before entering the study. Chocolate does contain the polyphenols epicatechin and epicatechingallate, and the turnover rate of these polyphenols - how long they might remain in tissue - is not known. They are water-soluble and are all excreted after eight hours. The maximum concentration in plasma is after two to three hours.

But two important factors were different in the men who drank tea and those who did not during the five-day study.

When the scientists compared the level of total polyamine to the total polyphenol content, the tea drinkers showed a significant negative correlation - the more tea components in the tissue, the less of the polyamines associated with malignancy.

And when the scientists measured the proliferation of prostate cancer cells, there was a significant decrease in how fast new cancer cells appeared for the men who had consumed either green or black tea. That was true even when no tea components could be detected in the serum, indicating, says Dr. Henning, that the inhibition of cell proliferation was caused by other compounds altered through tea consumption.

Prostate cancer is one of the common cancers among males in the United States, and more than a fourth of all those patients with prostate cancer are known to use alternative therapies, including green tea. This study suggests that both black and green tea are promising natural dietary supplements useful for chemoprevention of prostate cancer, according to Dr. Henning. She plans to investigate if this effect can be enhanced by consuming larger amounts of tea polyphenols in the form of green tea extract supplement capsules.

Dr. Henning’s co-authors are Yantao Niu, Nicolas H. Lee, Francisco Conde, Pakshan Leun, Jenny Hong, George Csathy, Hossein Ziaee, Vay L. W. Go, David Heber, and William J. Aronson, of UCLA’s Center for Human Nutrition, Department of Urology, and Department of Physiology.

Sarah Goodwin | EurekAlert!
Further information:
http://www.faseb.org/

More articles from Studies and Analyses:

nachricht Drought hits rivers first and more strongly than agriculture
06.09.2018 | Max-Planck-Institut für Biogeochemie

nachricht Landslides triggered by human activity on the rise
23.08.2018 | European Geosciences Union

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

Elucidating cuttlefish camouflage

18.10.2018 | Life Sciences

Robot-assisted sensor system for quality assurance of press-hardened components

17.10.2018 | Trade Fair News

Sensory Perception Is Not a One-Way Street

17.10.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>