Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jefferson Scientists Use Zebrafish Model to Show Effects of Ionizing, UV Radiation Differ During Development

31.03.2004


The results and use of the model may have implications for cancer therapy



Zebrafish may prove to be an invaluable animal model with which to screen the effects of radiation, Jefferson Medical College researchers have found.

Adam Dicker, M.D., Ph.D., associate professor of radiation oncology at Jefferson Medical College of Thomas Jefferson University and Jefferson’s Kimmel Cancer Center in Philadelphia, Mary Frances McAleer, M.D., Ph.D., a resident in the Department of Radiation Oncology at Jefferson Medical College and their co-workers compared the effects on zebrafish embryos of two types of radiation – ionizing radiation, which is the kind given to patients for cancer treatment, and ultraviolet (UV) radiation, which comes naturally from the sun.


The researchers exposed the embryos at different time points in development to different doses of ionizing and UV radiation, comparing the sensitivity of the embryos.

“We found that the zebrafish were very sensitive to the mid-blastula transition, the point in development in which the embryo goes from relying on the maternal mRNA in the yolk sac to the embryo itself controlling development,” Dr. McAleer says.

Prior to this transition, the fish are extremely sensitive to ionizing radiation, she says. But when exposed to UV light, the younger embryos were unaffected. But later, after the transition period, the embryos show morphologic damage in their development when exposed to UV radiation.

Dr. McAleer presents the team’s findings March 30 at the annual meeting of the American Association for Cancer Research in Orlando.

“We saw something unique,” she says. “We hypothesize that this may be due to the gene expression of the embryos.” The researchers say that prior to the mid-blastula transition, cells are going through the cell growth cycle without regulation, rapidly dividing. At that point, the cell cycle becomes asynchronous, with certain cells dividing at the same time – which is when differentiation and “the crux of development” occurs.

They found that much of the damage from ionizing radiation is due to breaks in both strands of the cell’s double-stranded DNA. When the fish were exposed to UV light, the DNA formed “crosslinks” in which two thymine bases form on the same strand next to each other. The cell uses entirely different repair mechanisms to fix both types of damage.

The Jefferson team performed a microarray analysis to confirm their findings. They looked at normal embryos unexposed to radiation at different time points in their development, examining different groups of genes in normal embryos involved in various types of DNA repair, including base-excision repair, mismatch repair and double-strand break repair.

They found that prior to the mid-blastula transition, the enzymes required for mismatch and base repair are elevated. “Conversely, the double-strand break repair genes aren’t expressed until following that time point,” Dr. McAleer says. “This supported our observation that this is gene expression-based. The damage we saw early in the fish exposed to ionizing radiation is related to the absence of the double-strand break repair enzymes. There is a low level of repair genes in the later fish, which is when we see UV exposure sensitivity.”

In earlier work, Dr. Dicker used zebrafish to show that while radiation and some chemotherapeutic agents damage DNA, there were different time periods in development in which the zebrafish were sensitive to either radiation or the drugs.

“In general, drugs targeted for specific enzymes are used in combination with chemotherapy agents,” he says. “We can use the zebrafish system to help us understand the mechanisms of how chemotherapy drugs work before we start adding them on.”

According to Dr. McAleer, the zebrafish as a vertebrate model with which to study cancer has several advantages. The embryos are optically transparent, meaning researchers can watch organs develop. The fish are easy to manipulate and manage, and develop into adults in a short time. Most importantly, their DNA or genome is very similar to humans.

Next, the researchers plan to use zebrafish to help them test the effectiveness of various drugs in blunting the effects of radiation.

Steven Benowitz | TJUH
Further information:
http://www.jeffersonhospital.org/news/e3front.dll?durki=17620

More articles from Studies and Analyses:

nachricht Autonomous Agriculture in 2045?
15.11.2019 | Fraunhofer-Institut für Experimentelles Software Engineering IESE

nachricht What and how much we eat might change our internal clocks and hormone responses
07.11.2019 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

Im Focus: Distorted Atoms

In two experiments performed at the free-electron laser FLASH in Hamburg a cooperation led by physicists from the Heidelberg Max Planck Institute for Nuclear physics (MPIK) demonstrated strongly-driven nonlinear interaction of ultrashort extreme-ultraviolet (XUV) laser pulses with atoms and ions. The powerful excitation of an electron pair in helium was found to compete with the ultrafast decay, which temporarily may even lead to population inversion. Resonant transitions in doubly charged neon ions were shifted in energy, and observed by XUV-XUV pump-probe transient absorption spectroscopy.

An international team led by physicists from the MPIK reports on new results for efficient two-electron excitations in helium driven by strong and ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

Observing changes in the chirality of molecules in real time

15.11.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>