Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rockefeller University scientists take on controversial ’vibration theory’ of smell

22.03.2004


Two researchers at Rockefeller University have put a controversial theory of smell to the sniff test and have found no evidence to support it.



They say their study, published in the April issue of Nature Neuroscience, should raise firm doubts about the validity of "vibration theory," which states that molecules in each substance generate a specific vibration frequency that the nose can interpret as distinct smells.

The reigning theory of smell, which also is as yet unproven, is that the shape of a chemical determines how it smells - much the same way as taste works.


However, at present there is no way to look at a chemical and predict what it will smell like. This is different from other sensory stimuli that are defined by simple physical properties. Color, for example, is defined by the wavelength of light.

While experiments conducted in this study were not designed to confirm the "shape theory," the results support the theory favored by most scientists, that shape of the odor molecule is the most important determinant of its smell.

"We didn’t disprove the vibration theory. We just didn’t find anything to support it," says assistant professor Leslie B. Vosshall, Ph.D., head of the Laboratory of Neurogenetics and Behavior. "All of our data are consistent with the shape theory, but don’t prove the shape theory."

The findings are important in the sometimes contentious field of smell research because it is the first time vibration theory has actually been put to the rigor of a controlled and double-blind human test, the Rockefeller researchers say.

Andreas Keller, Ph.D., a postdoctoral fellow in Vosshall’s lab, conducted a series of experiments that the principle proponent of vibration theory, the biophysicist Luca Turin, Ph.D., said would prove that his theory is correct.

Turin himself proposed the experiments in a theoretical paper but never undertook them, Keller says. Since Turin’s theory was based solely on his unverified reports about the smell of certain odorants, the scientific community rejected it as "a universal theory of smell based on one man’s olfactory impressions."

Turin’s theory has attracted public attention thanks to a BBC documentary about him and last year’s publication of the book "The Emperor of Scent." The book’s author, Chandler Burr, argues that Turin is a pioneering researcher who is being ignored by the smell research community because of his unconventional ideas.

Because Turin’s theory have received so much press attention, Vosshall explains that it was time for science to step in. "Our only goal is to do what Turin said should be done, in a properly controlled fashion," she says.

"I just did the experiments that Luca Turin suggested - but never actually did," says Keller. "He predicted what the outcomes would be, but we couldn’t produce them."

Smell is the last of the senses to be explained. Most researchers believe in the "lock and key" shape theory, which says the shape of a chemical (the "key") fits into odorant receptor proteins on the outside of cells ("locks") that are dedicated to the sense of smell. Activated receptors promote neuronal activity in the brain that, by a still mysterious process, leads to the perception of distinct odors. But the problem with the shape theory is that humans have only 347 different odorant receptor proteins dedicated to smell, as researchers working at Senomyx discovered in 2001. A strict lock-and-key mechanism would allow humans to smell only 347 different chemicals, called odorants, when, in fact, thousands are discernable.

So, researchers now believe that only part of the curves and angles that make up odorant chemicals need to fit into the receptor. "It is probably because the lock is a little loose that different keys can fit into the same lock," says Vosshall. Still, loose locks can’t explain the phenomenon by which two chemicals, each with a unique shape, can smell the same. "There are cases that are not intuitive for the shape theory, and that is why scientists have been looking for alternative theories for a very long time," Vosshall says.

Turin, who is a physiologist by training and a recognized expert on perfumes, expanded upon a theory first offered in the 1930s that smell depends on intramolecular vibrations of the odor molecule - basically the characteristic "stretching" of its chemical bonds and not the shape of molecules. He hypothesizes that receptors in the lining of the nose function as a biological "spectroscope" to measure vibrations of a chemical odorant. According to Turin, electrons in the receptor protein can lose energy by exciting the vibrational mode of a bound odorant. This only happens for a specific energy of this vibrational mode and, therefore, a receptor is only activated by odorants with a given vibrational energy.

To test Turin’s theory empirically, Keller designed a series of three experiments based on experiments that Turin had proposed to prove vibration theory. Keller recruited several dozen human volunteers to the new outpatient unit of The Rockefeller University Hospital to smell different odors presented in vials, which were coded so that he did not know what they contained. The sniffing subjects then answered a series of questions, such as whether the two odors smelled different or the same.

In the first experiment, Turin predicted that if two different chemicals (guaiacol, which smells smoky, and benzaldehyde, which smells like bitter almond) were mixed together, they would smell like vanilla, because their combined molecular vibrations would match those of vanilla. None of Keller’s subjects reported that the mixture had a stronger smell of vanilla than did either of the two chemicals by themselves.

In the second experiment, Keller tested whether aldehydes composed of an even number of carbon atoms smell different from those with an odd number. Aldehydes are a family of odorants made famous by being the major components of Chanel No. 5 perfume, and Turin predicted that the vibration of odd versus even aldehydes would not be the same because the aldehyde group of even number aldehydes would have more freedom to rotate, producing different vibrational frequencies. But vials consisting of two odd or two even aldehydes were not perceived by participants as more similar than vials containing an odd and an even number aldehyde, Keller says.

Vosshall adds that, in fact, this experiment supports the shape theory "because the more different in size the aldehydes are from each other, the easier it is for the human subjects to tell them apart."

The final experiment, a test of both the shape and vibration theory, is based on Turin’s proposal that two chemicals that have almost identical shapes (acetophenone and deuterated acetophenone) have markedly different molecular vibrations and therefore distinct smells. Deuterated acetophenone is acetophenone that is modified to have all its hydrogen atoms replaced by deuterium atoms. This minor chemical change has only slight effects on shape, but according to Turin has major effects on vibration. In several different tests, none of the subjects could tell the difference between the two.

"They smelled the same to the subjects, which again points to a shape theory," Vosshall says. "Does that mean that no human on Earth is able to tell the difference? No, and we weren’t able to test Luca Turin. It is possible that other people can do it, but not our subjects."

Because the study was not designed by the researchers to prove either theory, but rather to put Turin’s theoretical approach to the test, "this is a paper of solely negative results," Vosshall says. "It shows us that molecular vibrations alone cannot explain the perceived smell of a chemical."

The study by Keller and Vosshall shows that hypotheses, no matter how intriguing they sound, have to be tested in rigorous experiments. It doesn’t tell us how the sense of smell works, yet. But Keller adds that he plans to conduct additional experiments, of his own design, to help tease out the truth behind smell.

Joseph Bonner | EurekAlert!
Further information:
http://www.rockefeller.edu/

More articles from Studies and Analyses:

nachricht Antarctic Ice Sheet mass loss has increased
14.06.2018 | Technische Universität Dresden

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>