Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain scans show how placebo eases pain

20.02.2004


New studies are the first to document changes induced by placebo in the brain’s pain pathways



Researchers have produced the strongest evidence yet that placebo--or the mere expectation of relief, with no real treatment--causes physical changes in how the brain responds to pain. Their report appears in the Feb. 20 issue of Science.

In two related studies at the Ann Arbor Veterans Affairs (VA) Health Care System, University of Michigan and Princeton University, researchers used functional magnetic resonance imaging (fMRI) to map changes in blood flow in the brains of volunteers. The volunteers were subjected to harmless but occasionally painful electric shocks or heat. When they believed an anti-pain cream had been applied to their arm, they rated the pain as less intense--and the pain circuits in their brain showed less activity.


Doctors have long recognized the power of placebo to make patients feel better. But scientists are unsure why it works, and whether nerve pathways are actually affected. The new studies provide the first scans documenting the changes induced by placebo in the brain’s pain pathways.

"We’ve shown what the old family doctor knew very well--that his interaction with the patient made a great difference in the effectiveness of whatever treatment he was giving," said one of the researchers, Kenneth L. Casey, MD, who has studied pain for three decades. Casey is a neurology consultant for VA and a professor at the University of Michigan. Lead author was Tor D. Wager, MD, a graduate student at the University of Michigan when the research was conducted.

Researchers have performed brain experiments with fMRI since the early 1990s. It uses the technology of MRI--radio waves and a strong magnetic field--to show regions of the brain where blood vessels are widening, extra oxygen is being delivered, or other chemical changes are occurring. These are signs that an area of the brain is busy at work. By taking fMRI images as patients perform different tasks, researchers learn which areas of the brain control which functions.

The Michigan and Princeton pain studies, each involving about two dozen volunteers, show the prefrontal cortex as the area of the brain active in the placebo response. Scientists have developed intriguing models of how this area of the brain guides thought and action based on internal goals and expectations. In support of those theories, the new research by Casey and Wager’s group provides the first images of how the prefrontal cortex is activated by the expectation of pain relief, and how this in turn triggers a reduction of activity in pain-sensing areas of the brain: the thalamus, somatosensory cortex, and other parts of the cerebral cortex.

According to Casey, this clearer knowledge of the brain’s pain pathways may lead to new therapies for those with chronic or acute pain. "One could imagine compounds that would activate these control systems specifically," he said.

Casey also said the research sheds new light on the tangible benefits of the placebo effect in medicine. "If you’re providing a treatment to a patient, it’s important that you realistically provide them with the expectation that it would work, so you enhance the effect. If you gave them a drug or any kind of treatment with the attitude, either explicit or implicit, that this might not be effective, it would be much less likely to be effective."

Working with Wager and Casey on the study were James K. Rilling and Jonathan D. Cohen of Princeton University; Edward E. Smith and Alex Sokolik, University of Michigan; Richard J. Davidson, University of Wisconsin; Stephen M. Kosslyn, Harvard University; and Robert M. Rose, University of Texas Medical Branch.

Bonnie Johnson | EurekAlert!

More articles from Studies and Analyses:

nachricht Self-organising system enables motile cells to form complex search pattern
07.05.2019 | Westfälische Wilhelms-Universität Münster

nachricht Mouse studies show minimally invasive route can accurately administer drugs to brain
02.05.2019 | Johns Hopkins Medicine

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Plumbene, graphene's latest cousin, realized on the 'nano water cube'

23.05.2019 | Materials Sciences

New flatland material: Physicists obtain quasi-2D gold

23.05.2019 | Materials Sciences

New Boost for ToCoTronics

23.05.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>