Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain scans show how placebo eases pain

20.02.2004


New studies are the first to document changes induced by placebo in the brain’s pain pathways



Researchers have produced the strongest evidence yet that placebo--or the mere expectation of relief, with no real treatment--causes physical changes in how the brain responds to pain. Their report appears in the Feb. 20 issue of Science.

In two related studies at the Ann Arbor Veterans Affairs (VA) Health Care System, University of Michigan and Princeton University, researchers used functional magnetic resonance imaging (fMRI) to map changes in blood flow in the brains of volunteers. The volunteers were subjected to harmless but occasionally painful electric shocks or heat. When they believed an anti-pain cream had been applied to their arm, they rated the pain as less intense--and the pain circuits in their brain showed less activity.


Doctors have long recognized the power of placebo to make patients feel better. But scientists are unsure why it works, and whether nerve pathways are actually affected. The new studies provide the first scans documenting the changes induced by placebo in the brain’s pain pathways.

"We’ve shown what the old family doctor knew very well--that his interaction with the patient made a great difference in the effectiveness of whatever treatment he was giving," said one of the researchers, Kenneth L. Casey, MD, who has studied pain for three decades. Casey is a neurology consultant for VA and a professor at the University of Michigan. Lead author was Tor D. Wager, MD, a graduate student at the University of Michigan when the research was conducted.

Researchers have performed brain experiments with fMRI since the early 1990s. It uses the technology of MRI--radio waves and a strong magnetic field--to show regions of the brain where blood vessels are widening, extra oxygen is being delivered, or other chemical changes are occurring. These are signs that an area of the brain is busy at work. By taking fMRI images as patients perform different tasks, researchers learn which areas of the brain control which functions.

The Michigan and Princeton pain studies, each involving about two dozen volunteers, show the prefrontal cortex as the area of the brain active in the placebo response. Scientists have developed intriguing models of how this area of the brain guides thought and action based on internal goals and expectations. In support of those theories, the new research by Casey and Wager’s group provides the first images of how the prefrontal cortex is activated by the expectation of pain relief, and how this in turn triggers a reduction of activity in pain-sensing areas of the brain: the thalamus, somatosensory cortex, and other parts of the cerebral cortex.

According to Casey, this clearer knowledge of the brain’s pain pathways may lead to new therapies for those with chronic or acute pain. "One could imagine compounds that would activate these control systems specifically," he said.

Casey also said the research sheds new light on the tangible benefits of the placebo effect in medicine. "If you’re providing a treatment to a patient, it’s important that you realistically provide them with the expectation that it would work, so you enhance the effect. If you gave them a drug or any kind of treatment with the attitude, either explicit or implicit, that this might not be effective, it would be much less likely to be effective."

Working with Wager and Casey on the study were James K. Rilling and Jonathan D. Cohen of Princeton University; Edward E. Smith and Alex Sokolik, University of Michigan; Richard J. Davidson, University of Wisconsin; Stephen M. Kosslyn, Harvard University; and Robert M. Rose, University of Texas Medical Branch.

Bonnie Johnson | EurekAlert!

More articles from Studies and Analyses:

nachricht Researchers simplify tiny structures' construction drip by drip
12.11.2018 | Princeton University, Engineering School

nachricht Mandibular movement monitoring may help improve oral sleep apnea devices
06.11.2018 | Elsevier

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First diode for magnetic fields

Innsbruck quantum physicists have constructed a diode for magnetic fields and then tested it in the laboratory. The device, developed by the research groups led by the theorist Oriol Romero-Isart and the experimental physicist Gerhard Kirchmair, could open up a number of new applications.

Electric diodes are essential electronic components that conduct electricity in one direction but prevent conduction in the opposite one. They are found at the...

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Removing toxic mercury from contaminated water

21.11.2018 | Life Sciences

New China and US studies back use of pulse oximeters for assessing blood pressure

21.11.2018 | Medical Engineering

Exoplanet stepping stones

21.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>