Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Accelerate Global Agreement to Oversee Exploitation of South Pole “Extremophiles”

02.02.2004


Ownership of genetic materials, environmental consequences in question as 21st Century bio-prospecting gets underway in Antarctica



Work should be stepped up on international agreements to oversee prospecting efforts in Antarctica by research institutions, universities and pharmaceutical companies to discover and stake ownership to promising organisms and compounds with genetic properties that make survival possible in extremely cold, arid and salty conditions, says a new UN University report.

Bioprospectors are starting to turn their attention to many of the world’s last frontiers, such as hydrothermal vents, the deep seabed, the water column of the high seas and polar ice caps. Indeed, according to the report[1], these frontiers have the potential to create a 21st Century “gold rush” – with bioprospectors trying to find and exploit the unique genetic and biochemical riches of “extremophiles,” organisms that have evolved unique characteristics to survive in Earth’s most hostile environments.


Many scientists believe that isolating and extracting the substances that allow these organisms to prosper could have enormous implications in biotechnology research, possibly leading to new cancer treatment drugs, antibiotics and industrial compounds.

But in fragile Antarctica this optimism is offset by warnings of significant consequences if an unregulated international “free-for-all” is allowed to develop.

“Biological prospecting for extremophiles is already occurring and is certain to accelerate in Antarctica and the southern oceans,” said Dr. A.H. Zakri, Director of UNU’s Institute of Advanced Studies, the Tokyo-based research center that conducted the study.

“This report suggests that efforts to exploit this new frontier are now threatening to outpace the capacity of national and international law to regulate such things as ownership of genetic materials, the issuing of patents on products that may arise from them, and the potential environmental consequences of harvesting these resources.”

The information is being released on the eve of a major global biodiversity meeting expected to attract more than 2,500 global officials and experts to Kuala Lumpur Feb. 9 to 20: the 7th Conference of Parties to the UN Convention on Biological Diversity. The extremophiles report was undertaken as part of a wide-ranging UNU-IAS initiative to help foster and support global “biodiplomacy[2].”

So far, the report says, biological prospecting in Antarctica has usually been carried out by consortia made up of public and private bodies, principally universities, research centers and biotechnology and pharmaceutical companies. This has made it difficult to draw a clear line between scientific research and commercial activities, although it is clear that much of the recent activity has led to commercial applications.

One of these is a glycoprotein, which functions as the ‘antifreeze’ that circulates in some Antarctic fish, preventing them from freezing in their sub–zero environments. It was discovered in the early 1970s by University of Illinois scientists conducting research funded by the US National Science Foundation.

The glycoprotein has a range of potential applications, including increasing the freeze tolerance of commercial plants, improving farm–fish production in cold climates, extending the shelf life of frozen food, improving surgery involving the freezing of tissues, and enhancing the preservation of tissues to be transplanted.

A preliminary scan of the US Patent Office database identified more than 300 references to Antarctica and 92 applications for patents that referred to Antarctica. A similar survey of European Patent Office records turned up 62 patents that rely on Antarctic biodiversity.

Some recent examples:
  • In 2002, Spain granted a patent for the wound healing and skin, hair and nail treatment properties of a glycoprotein extracted from an Antarctic bacteria;
  • The same year, an extract from an Antarctic green algae was patented in Germany for use in cosmetic skin treatment;
  • In 1997, a patent was granted by the Russian patent office for the production of biologically active substances with anti–tumour properties extracted from a strain of Antarctic black yeast;
  • An application currently with the US Patent Office covers a process for producing anti-freeze chemicals discovered in Antarctic bacteria which may help to increase the shelf life of foods such as ice-cream and frozen vegetables.

The report notes that developing commercial products from naturally occurring genetic resources or biochemical processes is typically a long, expensive and uncertain process. Even so, annual sales derived from traditional knowledge using genetic resources are $3 billion for the cosmetics and personal care industry, $20 billion for the botanical medicine sector and $75 billion for the pharmaceutical industry. More than 60 percent of the cancer drugs approved by the US Food and Drug Administration are of natural origin or are modeled on natural products.

“Although there has been a recent downturn in bioprospecting overall, it seems that the commercial use of naturally occurring extremophiles will increase, perhaps dramatically, in the near future,” said Hans van Ginkel, Rector of UN University.

“This study shows that the world must be better prepared for this, especially with respect to the Antarctica. Many issues and questions need to be resolved in advance of the further exploitation of genetic resources at the pole.”

UNU-IAS researcher Sam Johnston, report co-author, said the Antarctic Treaty System (ATS), the principal international agreement governing activity on the continent, does not specifically regulate bio-prospecting. Moreover, international policies governing bio-prospecting elsewhere are of limited value in addressing these questions.


Among the key issues not addressed by the ATS:

  • Who owns the Antarctic genetic resources?
  • How can scientists working in the Antarctic Treaty area legitimately acquire these resources?
  • What measures do scientists have to take to protect these resources?
  • Is benefit sharing feasible and, if so, with whom?
  • Who owns the commercial products resulting from these resources?
  • What is the relationship between the ATS and other international agreements e.g. the Convention on Biological Diversity (CBD) and the UN Convention on the Law of the Sea (UNCLOS)?
  • Does bio-prospecting contravene Article III of the ATS which stipulates that:
    • Information regarding plans for scientific programs in Antarctica should be exchanged.
    • Scientific personnel should be exchanged between expeditions and stations.
    • Scientific observations and results should be exchanged and made freely available.

The report concludes that although the physical impact of bioprospecting is currently addressed by the ATS regime, establishing the legal and policy basis that controls the commercialization of genetic resources, in line with the basic principles of the ATS as well as equity and fairness, is a more complex matter.

“Indeed, developing measures on bioprospecting in Antarctica would require some basic conceptual agreement about the overall aims of any regulation and the type of management system that is desirable, feasible, practical, and equitable.”

The study recommends further analysis and research with the emphasis on:

  • Information about existing and planned bio-prospecting activities in Antarctica.
  • Information on current and planned commercially orientated research involving Antarctic biota.
  • A working definition of bio-prospecting.
  • The legal issues relating to the ownership and protection of these resources?
  • Who owns the commercial products resulting from the resources?
  • Is benefit sharing feasible and if so with whom?
  • The relationship between the ATS and other international policies.
  • Is bio-prospecting contrary to Article III of the Treaty?
  • Preliminary views about the need for regulation or guidelines.

Terry Collins | UN University
Further information:
http://www.unu.edu/news/extremophiles.html

More articles from Studies and Analyses:

nachricht Researchers simplify tiny structures' construction drip by drip
12.11.2018 | Princeton University, Engineering School

nachricht Mandibular movement monitoring may help improve oral sleep apnea devices
06.11.2018 | Elsevier

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>