Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Thailand dengue hemorrhagic fever epidemics spread in waves emanating from Bangkok

22.01.2004


Findings Could Aid Treatment Planning and Prevention Strategies



Researchers at the Johns Hopkins Bloomberg School of Public Health studying dengue hemorrhagic fever epidemics in Thailand have determined that the disease radiates outward in a traveling wave from Bangkok, the nation’s largest city, to infect every province in the country. According to the researchers’ analysis, the spatial-temporal wave travels at a speed of 148 kilometers per month and takes about eight months to spread through the entire country. The analysis appears in the January 22, 2004, edition of the journal Nature.

“We used a new mathematical technique developed by NASA for analysis of waves in physical materials – like water waves and sound waves – to study “epidemic waves” of dengue cases. Our study is the first step to understanding the mechanism of how a disease like dengue spreads through the country,” said lead author Derek Cummings, a PhD candidate at the Johns Hopkins University’s Bloomberg School of Public of Health and Whiting School of Engineering. “Anticipating dengue epidemics and determining the causes of those epidemics could help us plan control strategies more effectively.”


Dengue fever is a mosquito-borne illness that infects 50 million to 100 million people worldwide each year, many of them children. Epidemics of the most serious and life-threatening form of the disease, dengue hemorrhagic fever, place a heavy burden on public health systems.

The number of cases of dengue hemorrhagic fever in Thailand varies widely from year to year. Cummings and his colleagues examined the spatial-temporal dynamics of dengue hemorrhagic fever in a data-set describing 850,000 infections that occurred between 1983 and 1997. Their analysis showed that outbreaks in provinces surrounding Bangkok were either synchronous or lag behind Bangkok, which indicated a repeating, spatial-temporal wave emanating from the city. The researchers do not know exactly why the wave occurs, but they believe it is related to the movement of people. Bangkok is heavily populated and it is the cultural and economic center of Thailand.

“Disease surveillance and control in Bangkok may help surrounding regions prepare for future outbreaks of dengue fever. Our results suggest that high priority should be placed on surveillance and control systems in urban areas of Southeast Asia,” said Donald S. Burke, MD, co-author of the study and professor of International Health at the School of Public Health.



“Traveling waves in the occurrence of dengue hemorrhagic fever in Thailand” was written by Derek A.T. Cummings, Rafael A. Irizarry, Norden E. Huang, Timothy P. Endy, Ananda Nisalak, Kummuan Ungchusak, and Donald S. Burke.

Research was supported by grants from the National Oceanic and Atmospheric Administration’s Joint Program on Climate Variability and Human Health and the Bill and Melinda Gates Foundation.

Public Affairs Media Contacts for the Johns Hopkins Bloomberg School of Public Health: Tim Parsons or Kenna Brigham at 410-955-6878 or paffairs@jhsph.edu.

Tim Parsons | JHU
Further information:
http://www.jhsph.edu/Press_Room/Press_Releases/Burke_Thailand_dengue.html

More articles from Studies and Analyses:

nachricht Rising CO2 has unforeseen strong impact on Arctic plant productivity
21.02.2019 | Max-Planck-Institut für Meteorologie

nachricht Scientists Create New Map of Brain’s Immune System
18.02.2019 | Universitätsklinikum Freiburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: (Re)solving the jet/cocoon riddle of a gravitational wave event

An international research team including astronomers from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has combined radio telescopes from five continents to prove the existence of a narrow stream of material, a so-called jet, emerging from the only gravitational wave event involving two neutron stars observed so far. With its high sensitivity and excellent performance, the 100-m radio telescope in Effelsberg played an important role in the observations.

In August 2017, two neutron stars were observed colliding, producing gravitational waves that were detected by the American LIGO and European Virgo detectors....

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

JILA researchers make coldest quantum gas of molecules

22.02.2019 | Physics and Astronomy

Understanding high efficiency of deep ultraviolet LEDs

22.02.2019 | Materials Sciences

Russian scientists show changes in the erythrocyte nanostructure under stress

22.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>