Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Alcohol-dependence gene identified

15.01.2004


Investigators at Washington University School of Medicine in St. Louis, Indiana University School of Medicine and other centers have identified a gene that appears to increase the risk of alcoholism.



The study, published in the January issue of the journal Alcoholism: Clinical and Experimental Research, is the first to demonstrate an association between this particular gene and alcohol dependence.

The gene is related to a receptor that allows for the movement of Gamma-amino butyric acid (GABA) between nerve cells. GABA is the major inhibitory chemical in the central nervous system.


"There were lines of evidence from other studies -- animal studies, in vitro studies -- that suggested GABA receptors are involved in the behavioral effects of alcohol," says lead author Danielle M. Dick, Ph.D., research assistant professor of psychiatry at Washington University School of Medicine in St. Louis. "Because GABA receptor genes were likely candidates and previous studies had linked this area on chromosome 15 to alcoholism, we zeroed in on three GABA receptor genes but only found significant association with one of them."

The study was conducted as part of the national Collaborative Study on the Genetics of Alcoholism (COGA), an ongoing project involving interviews and DNA samples from more than 10,000 individuals from inpatient and outpatient alcohol treatment centers and their families. Families in the COGA study usually have several members with alcohol dependence.

For this study, the investigators analyzed DNA from 262 families, a total of 2,282 individuals. They isolated three genes on chromosome 15 -- GABRA5, GABRB3 and GABRG3 -- that sit very close together on the chromosome. Then the investigators used markers called SNPs (single nucleotide polymorphisms) to study differences between the participants’ genes.

The markers demonstrated small genetic differences did appear to influence the risk of alcohol dependence, but only in one of the genes: GABRG3.

But it is not known how GABRG3 influences alcoholism risk. Dick says previous research has suggested chemicals that increase GABA receptor activity can accentuate the behavioral effects of alcohol, such as sedation, loss of anxiety and problems with motor coordination. Conversely, chemicals that decrease GABA receptor activity can have the opposite effect.

"This suggests that somehow GABA reception might be involved in these behavioral effects," Dick says. "But we don’t know exactly how, so we can’t tell what the pathway might be that leads from GABA receptor genes to alcoholism."

Finding that GABA is involved in alcohol abuse and dependence supports a current theory that predisposition to alcoholism might be inherited as part of a general state of brain overactivation. People at risk for alcoholism may inherit a variety of genes that contribute to this state. Perhaps alcohol normalizes that state of excitability, leading people with a hyperexcited nervous system to use alcohol more frequently in order to normalize brain circuits. That, in turn, would put them at greater risk for developing alcohol dependence.

Dick says it is important to point out that genetic make-up does not necessarily mean a person is doomed to become an alcoholic.

"One reason it is so difficult to find genes involved in psychiatric disorders is that there is an interplay between genetic and environmental factors," she says. "A person can carry all kinds of genes that predispose them to alcohol dependence, but if they never take a drink, they won’t become an alcoholic."


Dick DM, Edenberg HJ, Xuei X, Goate A, Kuperman S, Schuckit M, Crowe R, Smith TL, Porjexa B, Begleiter H, Foroud T. Association of GABRG3 with alcohol dependence. Alcoholism: Clinical & Experimental Research, vol. 28:1, pp. 2042-2047, January 2004.

This research was funded by the National Institute of Alcohol Abuse and Alcoholism of the National Institutes of Health.

Jim Dryden | WUSTL
Further information:
http://aladdin.wustl.edu/medadmin/PAnews.nsf/news/C3F47FE4B380C92986256E19006CE5F1?OpenDocument
http://medinfo.wustl.edu/

More articles from Studies and Analyses:

nachricht New study shows nanoscale pendulum coupling
05.07.2019 | University of Barcelona

nachricht New unprinting method can help recycle paper and curb environmental costs
26.06.2019 | Rutgers University

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

USF geoscientists discover mechanisms controlling Greenland ice sheet collapse

22.07.2019 | Earth Sciences

Heat flow through single molecules detected

19.07.2019 | Physics and Astronomy

Heat transport through single molecules

19.07.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>