Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A big surprise: Young nerve cells can rewind their developmental clocks

02.01.2004


Scientists have identified a gene in the cerebral cortex that apparently controls the developmental clock of embryonic nerve cells, a finding that could open another door to tissue replacement therapy in the central nervous system. In a new study, the researchers found that they could rewind the clock in young cortical cells in mice by eliminating a gene called Foxg1. The finding could potentially form the basis of a new method to push progenitor cells in the brain to generate a far wider array of tissue than is now possible.



The study, led by researchers at NYU School of Medicine, is published in the January 2, 2004 issue of Science magazine.

"What we found was a complete surprise," says Gordon Fishell, Ph.D., Associate Professor in the Department of Cell Biology at New York University School of Medicine. "No one had believed that it was possible to push back the birth date of a cortical neuron. There is this central tenet governing the process of brain development, which says that late progenitor cells [forerunners of mature cell types] cannot give rise to cell types produced earlier in development," he explains.


"Consequently, while some populations of stem cells exist in the adult brain, these cells are restricted to producing only a subset of cell types," notes Dr. Fishell. "If one’s goal is to produce cells for replacement therapy, some method must be found to turn back the clock and allow adult stem cells to give rise to the wide variety of cells made during normal brain development."

Eseng Lai, Ph.D., of Merck & Co. and one of the study’s co-authors, cloned the Foxg1 gene while he was working at Memorial Sloan-Kettering Cancer Center in New York. He also did seminal work in the late 1990s showing that when the gene is eliminated in embryonic mice, the brain’s cerebral hemispheres barely develop. Subsequent work demonstrated that the gene played a role in the early phases of cortical development.

The cerebral cortex is massively folded gray matter incorporating billions of neurons. Despite its complexity, the cortex comprises six orderly layers of cortical cells that are laid down during development at a precise time and in a precise sequence. In the study, the researchers asked which cortical cell types embryonic mice lacking Foxg1 can generate. Carina Hanashima, Ph.D., a postdoctoral fellow in Dr. Fishell’s laboratory who had previously worked with Dr. Lai, conducted a series of experiments that made the analysis possible.

The progenitor cells for the cortex are born in a zone deep in the brain, and migrate to their assigned layer, depending on the time they are born. So a cortical cell’s identity is based on the date of its birth. The first cortical cells to be born populate layer 1, the most superficial layer, which is made up of special Cajal-Retzius (CR) cells. The next cells born migrate to the innermost layer, layer 6. Subsequent layers pile up above layer 6 (between layers 6 and 1), and in descending numerical order from 5 to 2. Each layer has a specific type of neuron associated with it.

The researchers looked at the cortical layers in embryonic mice at a time in their development when layers 1, 6, and 5, would normally have already been formed. In mice lacking the Foxg1 gene, the researchers found that only layer 1, which is made up of CR cells, was present, and these cells were abundant. The absence of other cell types implicated the gene in producing later-born cortical cell types.

One of the ways the scientists were able to identify CR cells was by the expression of a protein called reelin, which plays a vital role in building the developing brain and is only present in CR cells. Mice lacking the protein stumble around so much that they were named "reelers." The cortical layers in these mice are scrambled. In recent years, reelin deficiencies have been linked to such human disorders as schizophrenia and epilepsy.

In subsequent experiments, the researchers asked how the overproduction of CR cells occurs. They used a clever biochemical manipulation that served as a kind of genetic stop watch, allowing them to temporarily turn off the Foxg1 gene in late progenitor cells, after the normal birth date of CR cells had passed. In this way, they observed that cortical cells destined to become layer 5 became CR cells instead. Apparently, the gene orchestrates the program responsible for ensuring that the cortical layers of the cerebral cortex are laid down in a precise sequence. When the gene is inactivated or turned off, the program seems to revert to its earliest stage.

The researchers do not know how late in the game they can play their genetic tricks. If they turn off the Foxg1 gene at a later time in development, such as when cortical layers 2 or 3 are forming, will progenitor neuronal cells still become CR cells? Are there other genes that control the developmental clock? If such genes exist, it may be possible to turn these genes off in adult neural stem cells, and thereby generate a far broader array of tissue than otherwise possible. "I would say that the chances of this happening are very remote," says Dr. Fishell, "but then again, I never thought that the clock could have been turned back in neuronal progenitor cells."

The authors of the study are Gordon Fishell and Carina Hanashima of NYU School of Medicine; Eseng Lai of Merck; Suzanne Li of Memorial Sloan-Kettering Cancer Center; and Lijian Shen of Weill Medical College of Cornell University.

Pamela McDonnell | EurekAlert!
Further information:
http://www.med.nyu.edu/

More articles from Studies and Analyses:

nachricht Deep Brain Stimulation Provides Sustained Relief for Severe Depression
19.03.2019 | Universitätsklinikum Freiburg

nachricht AI study of risk factors in type 1 diabetes
06.03.2019 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Bacteria may travel thousands of miles through the air globally

25.03.2019 | Life Sciences

Key evidence associating hydrophobicity with effective acid catalysis

25.03.2019 | Life Sciences

Drug diversity in bacteria

25.03.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>