Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biodegradable particles mimic white blood cells, target inflamed tissue, new study finds

17.12.2003


Scientists have developed biodegradable polymers that can mimic the ability of white blood cells to target inflamed blood vessel walls, according to a new study led by Ohio University researchers. The finding could be the first step in developing drugs that suppress specific sites of inflammation in medical conditions such as arthritis, heart disease and inflammatory bowel disease.



Researchers found that biodegradable beads coated with targeting molecules can travel through the bloodstream and effectively stick to the site of tissue inflammation, a symptom of various diseases, according to the study, which will be published in the Dec. 23 issue of the journal Proceedings of the National Academy of Sciences. Scientists are interested in drugs made from biodegradable polymers because they can be easily prepared, have a long shelf life and can be designed to release specific doses of medication, according to the study.

When the body suffers from a bacterial infection or a wound, the white blood cells, or leukocytes, adhere to the site to treat the problem. But in inflammatory diseases such as arthritis, heart disease or inflammatory bowel disease, leukocytes accumulate in an area where they aren’t needed and cause or progressively worsen the disease.


To address that issue, Ohio University researcher Douglas Goetz and colleagues Justin Hanes of Johns Hopkins University, Kevin Shakesheff of the University of Nottingham in England, Mohammad Kiani of the University of Tennessee Health Science Center and David Kurjiaka of Ohio University have been studying whether biodegradable particles could be used to mimic the activity of leukocytes, traveling to the exact site of the inflammatory disease in the body and delivering treatment. Conventional drugs treat pathological inflammation, but may impact healthy tissue too.

"Can we take a particle and give it the same surface chemistry as the leukocyte and make it go where the leukocyte goes?" asked Goetz, an associate professor of chemical engineering whose research is funded by the National Science Foundation and the Whitaker Foundation.

The new study suggests that in animal models, a biodegradable bead can be coated with targeting molecules and show the same level of adhesion as leukocytes. Shakesheff originally developed the bead, which is made of polylactic acid and polyethylene glycol, two polymers commonly used in other medical applications, Goetz said. This biodegradable particle was 100 times more effective at sticking to the blood vessel wall than other materials tested in previous studies, the engineer said.

The bead degrades and converts to lactic acid, a substance normally found in the body. Goetz and colleagues, using novel polymers developed by Hanes, next will test different polymers – as well as smaller nanoparticles -- that could degrade even faster in the body and offer different drug delivery options, he said. Quick degradation also could help avoid uptake by organs not intended to receive the particles, he said, a possible negative side effect of the process.

The research team also will further examine another interesting finding from the study: The biodegradable particles not only mimic the leukocyte’s ability to stick to tissue, but its tendency to roll along the blood vessel wall. Though Goetz is unsure what impact this finding will have on drug delivery at this point, "it demonstrates how well we can control these particles – not only with selective delivery, but also the type of relationship they have with the vessel wall," he said.

Goetz, who next will study the drug delivery potential for chronic inflammatory conditions, hopes that the combined cell adhesion/drug delivery approach to addressing inflammation-related illnesses will progress in the next 10 years. Other scientists are making progress in creating a targeted drug delivery process to eradicate cancerous tumors, but applying such concepts to inflammatory diseases will call for some fine-tuning, he said. "Applying this to inflammation is a whole different ball game," Goetz said. "A patient probably won’t die from arthritis; it’s a much more subtle problem."

Other collaborators on the study are Harshad Sakhalkar, an Ohio University graduate student in chemical engineering; Milind Dalal, a former Ohio University graduate student in chemical engineering; Aliasger Salem of the University of Nottingham; Ramin Ansari of the University of Tennessee Health Science Center; and Jie Fu of Johns Hopkins University.


Contact: Douglas Goetz, 740-593-1494, goetzd@ohio.edu.

Andrea Gibson | EurekAlert!
Further information:
http://www.ohio.edu/researchnews/

More articles from Studies and Analyses:

nachricht Self-organising system enables motile cells to form complex search pattern
07.05.2019 | Westfälische Wilhelms-Universität Münster

nachricht Mouse studies show minimally invasive route can accurately administer drugs to brain
02.05.2019 | Johns Hopkins Medicine

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Uncovering hidden protein structures

18.06.2019 | Life Sciences

Monitoring biodiversity with sound: how machines can enrich our knowledge

18.06.2019 | Life Sciences

Schizophrenia: Adolescence is the game-changer

18.06.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>