Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nomadic outposts of transplanted stem cells tracked in Stanford study

16.12.2003


Doctors regularly inject stem cells into patients whose bone marrow has been destroyed by chemotherapy or radiation, but they haven’t known where these cells go after being injected. Research at the Stanford University School of Medicine has yielded an unexpected answer: when injected into mice, these cells may set up camp in one tissue early on but then move to another location or disappear entirely.



Published in the Dec. 15 online edition of the Proceedings of the National Academies of Science, the work upsets current thinking that transplanted stem cells find a habitable niche, settle in for the long haul and begin producing new blood cells. Instead, the newly transplanted cells drift throughout the body, nestling in one of a few homes where their populations subsequently wax and wane until some finally flourish.

Researchers said the procedure used to follow the injected cells’ movements could one day help scientists hone their techniques for transplanting bone-marrow stem cells in humans and optimize therapies for cancer and immunodeficiencies. Developing these types of new stem cell-based treatments for cancer is among the primary goals of Stanford’s Institute for Cancer/Stem Cell Biology and Medicine.


Yu-An Cao, PhD, a research associate and first author of the paper, said that until now injecting bone-marrow stem cells into a patient was like injecting them into a black box. "We didn’t know where those cells were going," he said. Watching the fates of these cells after transplantation had raised more questions than it answered. He said in testing a new protocol, they now can watch to see whether the cells proliferate more quickly or if the patterns of inhabitation are altered.

"We are really curious about what is happening," Cao said. "We want to know why the process is so dynamic with unpredictable fates for the initial stem cell foci. There’s no obvious reason for the stem cells to leave what appears to be a perfectly good place to homestead and proliferate."

Eventually, the work also could help guide transplantation procedures using other types of stem cells. Cao said an upcoming experiment will use the same technique to monitor transplanted neuronal stem cells. "We can monitor the fate of those stem cells and help evaluate transplantation protocols," he said. This type of approach could speed the development of stem cell transplantation therapies for disorders such as Parkinson’s disease.

Cao and Christopher Contag, PhD, assistant professor of pediatrics, radiology, microbiology and immunology, and lead author of the paper, were able to follow the transplanted cells’ travels because they all made a firefly protein called luciferase. This protein produces a dim light when it comes in contact with another molecule called luciferin. Unlike fireflies, mice don’t normally make luciferin, but the recipient mice received doses of the molecule throughout the experiment. Once injected into the recipient mice - whose bone marrow had been destroyed by radiation - the luciferase-producing transplanted cells produced a faint glow. Like a campfire at a new settlement, this dim light pinpointed the cells’ location.

Although the light from luciferase isn’t bright enough to see by eye, an ultrasensitive video camera originally developed by Contag can detect the faint light and show researchers where the glowing cells have settled. The experiment highlighted a handful of stem cell resting places, including the spleen and the bone marrow in the vertebrae, thighbone, shinbone, skull, ribs and sternum, where stem cells were already known to produce new blood cells.

Of all the locations, the spleen and the vertebrae were the two most likely sites for the new cells to settle. These are also the two roomiest compartments, according to Contag. "Where the cells go initially seems to relate to the size of the compartment and its openness," he said. If that location contained existing stem cells, the transplanted stem cell would detect signals indicating, "this compartment is full, we don’t want you here," he added. An empty compartment probably lacks these unwelcoming signals. "The cell knows there’s an empty seat to jump into, and now we can watch them play musical chairs - we just don’t hear the music yet."

What surprised the researchers is how much the pattern varied. In many cases one location would initially house a healthy population of glowing stem cells, only to have that population fade over time while daughter cells set up camp at a distant location. In other mice, locations that initially contained a languishing population of cells would suddenly flourish. When the researchers took stem cells from sites within one transplanted animal and put them into a second mouse lacking bone marrow, those stem cells once again seemed to take a random path to new niches and started the game of musical chairs over again. "This shows that the niche preferences aren’t programmed into the cells," Contag said.

Other Stanford researchers who contributed the work include postdoctoral scholars Amy Wagers, PhD, and Andreas Beilhack, PhD; technician Joan Dusich; research associate Michael Bachmann, MD, DSc; Robert Negrin, MD, associate professor of medicine; and Irving Weissman, MD, the Karel and Avice Beekhuis Professor of Cancer Biology and director of Stanford’s Institute for Cancer/Stem Cell Biology and Medicine.

Contag is one of the founders of Xenogen, which makes the sensitive video camera used in this study.


Stanford University Medical Center integrates research, medical education and patient care at its three institutions - Stanford University School of Medicine, Stanford Hospital & Clinics and Lucile Packard Children’s Hospital at Stanford. For more information, please visit the Web site of the medical center’s Office of Communication & Public Affairs at http://mednews.stanford.edu.

PRINT MEDIA CONTACT: Mitzi Baker at 650-725-2106 (mitzibaker@stanford.edu)
BROADCAST MEDIA CONTACT: M.A. Malone at 650-723-6912 (mamalone@stanford.edu)

Mitzi Baker | EurekAlert!
Further information:
http://mednews.stanford.edu

More articles from Studies and Analyses:

nachricht Deep Brain Stimulation Provides Sustained Relief for Severe Depression
19.03.2019 | Universitätsklinikum Freiburg

nachricht AI study of risk factors in type 1 diabetes
06.03.2019 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

Im Focus: Sensing shakes

A new way to sense earthquakes could help improve early warning systems

Every year earthquakes worldwide claim hundreds or even thousands of lives. Forewarning allows people to head for safety and a matter of seconds could spell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Levitating objects with light

19.03.2019 | Physics and Astronomy

New technique for in-cell distance determination

19.03.2019 | Life Sciences

Stellar cartography

19.03.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>