Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nomadic outposts of transplanted stem cells tracked in Stanford study

16.12.2003


Doctors regularly inject stem cells into patients whose bone marrow has been destroyed by chemotherapy or radiation, but they haven’t known where these cells go after being injected. Research at the Stanford University School of Medicine has yielded an unexpected answer: when injected into mice, these cells may set up camp in one tissue early on but then move to another location or disappear entirely.



Published in the Dec. 15 online edition of the Proceedings of the National Academies of Science, the work upsets current thinking that transplanted stem cells find a habitable niche, settle in for the long haul and begin producing new blood cells. Instead, the newly transplanted cells drift throughout the body, nestling in one of a few homes where their populations subsequently wax and wane until some finally flourish.

Researchers said the procedure used to follow the injected cells’ movements could one day help scientists hone their techniques for transplanting bone-marrow stem cells in humans and optimize therapies for cancer and immunodeficiencies. Developing these types of new stem cell-based treatments for cancer is among the primary goals of Stanford’s Institute for Cancer/Stem Cell Biology and Medicine.


Yu-An Cao, PhD, a research associate and first author of the paper, said that until now injecting bone-marrow stem cells into a patient was like injecting them into a black box. "We didn’t know where those cells were going," he said. Watching the fates of these cells after transplantation had raised more questions than it answered. He said in testing a new protocol, they now can watch to see whether the cells proliferate more quickly or if the patterns of inhabitation are altered.

"We are really curious about what is happening," Cao said. "We want to know why the process is so dynamic with unpredictable fates for the initial stem cell foci. There’s no obvious reason for the stem cells to leave what appears to be a perfectly good place to homestead and proliferate."

Eventually, the work also could help guide transplantation procedures using other types of stem cells. Cao said an upcoming experiment will use the same technique to monitor transplanted neuronal stem cells. "We can monitor the fate of those stem cells and help evaluate transplantation protocols," he said. This type of approach could speed the development of stem cell transplantation therapies for disorders such as Parkinson’s disease.

Cao and Christopher Contag, PhD, assistant professor of pediatrics, radiology, microbiology and immunology, and lead author of the paper, were able to follow the transplanted cells’ travels because they all made a firefly protein called luciferase. This protein produces a dim light when it comes in contact with another molecule called luciferin. Unlike fireflies, mice don’t normally make luciferin, but the recipient mice received doses of the molecule throughout the experiment. Once injected into the recipient mice - whose bone marrow had been destroyed by radiation - the luciferase-producing transplanted cells produced a faint glow. Like a campfire at a new settlement, this dim light pinpointed the cells’ location.

Although the light from luciferase isn’t bright enough to see by eye, an ultrasensitive video camera originally developed by Contag can detect the faint light and show researchers where the glowing cells have settled. The experiment highlighted a handful of stem cell resting places, including the spleen and the bone marrow in the vertebrae, thighbone, shinbone, skull, ribs and sternum, where stem cells were already known to produce new blood cells.

Of all the locations, the spleen and the vertebrae were the two most likely sites for the new cells to settle. These are also the two roomiest compartments, according to Contag. "Where the cells go initially seems to relate to the size of the compartment and its openness," he said. If that location contained existing stem cells, the transplanted stem cell would detect signals indicating, "this compartment is full, we don’t want you here," he added. An empty compartment probably lacks these unwelcoming signals. "The cell knows there’s an empty seat to jump into, and now we can watch them play musical chairs - we just don’t hear the music yet."

What surprised the researchers is how much the pattern varied. In many cases one location would initially house a healthy population of glowing stem cells, only to have that population fade over time while daughter cells set up camp at a distant location. In other mice, locations that initially contained a languishing population of cells would suddenly flourish. When the researchers took stem cells from sites within one transplanted animal and put them into a second mouse lacking bone marrow, those stem cells once again seemed to take a random path to new niches and started the game of musical chairs over again. "This shows that the niche preferences aren’t programmed into the cells," Contag said.

Other Stanford researchers who contributed the work include postdoctoral scholars Amy Wagers, PhD, and Andreas Beilhack, PhD; technician Joan Dusich; research associate Michael Bachmann, MD, DSc; Robert Negrin, MD, associate professor of medicine; and Irving Weissman, MD, the Karel and Avice Beekhuis Professor of Cancer Biology and director of Stanford’s Institute for Cancer/Stem Cell Biology and Medicine.

Contag is one of the founders of Xenogen, which makes the sensitive video camera used in this study.


Stanford University Medical Center integrates research, medical education and patient care at its three institutions - Stanford University School of Medicine, Stanford Hospital & Clinics and Lucile Packard Children’s Hospital at Stanford. For more information, please visit the Web site of the medical center’s Office of Communication & Public Affairs at http://mednews.stanford.edu.

PRINT MEDIA CONTACT: Mitzi Baker at 650-725-2106 (mitzibaker@stanford.edu)
BROADCAST MEDIA CONTACT: M.A. Malone at 650-723-6912 (mamalone@stanford.edu)

Mitzi Baker | EurekAlert!
Further information:
http://mednews.stanford.edu

More articles from Studies and Analyses:

nachricht TU Dresden biologists examine sperm quality on the basis of their metabolism
29.11.2019 | Technische Universität Dresden

nachricht Approaching the perception of touch in the brain
27.11.2019 | Max Planck Institute for Human Cognitive and Brain Sciences

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

Im Focus: Electronic map reveals 'rules of the road' in superconductor

Band structure map exposes iron selenide's enigmatic electronic signature

Using a clever technique that causes unruly crystals of iron selenide to snap into alignment, Rice University physicists have drawn a detailed map that reveals...

Im Focus: Developing a digital twin

University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Self-driving microrobots

11.12.2019 | Materials Sciences

Innovation boost for “learning factory”: European research project “SemI40” generates path-breaking findings

11.12.2019 | Information Technology

Molecular milk mayonnaise: How mouthfeel and microscopic properties are related in mayonnaise

11.12.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>