Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cell death promotes learning growth

27.11.2003


Background



The hippocampal formation has long been associated with the execution of higher-order cognitive functions, and impairment of this structure following severe stress and aging has been linked to cognitive disturbances. In order to understand the involvement of the hippocampal formation in the mediation of normal and pathological behaviors, much attention has recently been devoted to hippocampal neurogenesis. The dentate gyrus of the hippocampal formation has the ability to generate new neurons throughout the entire life. Surviving de novo produced cells develop into granule neurons and integrate into the functional circuitry. Neurogenesis has been proposed to play a role in hippocampal-mediated learning and has been implicated in the appearance of behavioral pathologies associated with the hippocampal formation.

Aim of the work


Although evidence suggest that neurogenesis play a role in spatial learning, the effect of learning on cell proliferation remains unclear. The authors generated and tested the hypothesis that different phases of spatial learning measured in the Morris water maze have distinct actions on cell proliferation. In this task, two phases of learning can be distinguished: an early phase during which performance improves rapidly, and a late phase during which asymptotic levels of performance are reached. These two phases seem to involve different brain processes and consequently may differentially influence neurogenesis.

Results

The authors demonstrated that the late phase of learning has a multifaceted effect on neurogenesis depending on the birth date of new neurons. The number of newly born cells increased contingently with the late phase and a large proportion of these cells survived for at least 4 weeks and differentiated into neurons. In contrast, the late phase learning decreased the number of newly born cells produced during the early phase. This learning-induced decrease in the number of newly generated cells results most probably from the death of the cells. Strikingly, cell death and not proliferation was positively correlated with performance in the water-maze. Thus, rats with the lowest cell death were less able to acquire and use spatial information than those with the highest cell death.

Conclusion

The results reveal a complex modulation of learning on brain plasticity, which induces death and proliferation of different populations of cells. Most importantly, they introduce the notion that removing neurons from the adult brain can be an important process in learning and memory and a novel mechanism through which neurogenesis may influence normal and pathological behaviors.


Citation source: Molecular Psychiatry 2003 Volume 8, number 12, pages 974-982.

AUTHORS: Matè Daniel Döbrössy*, Elodie Drapeau*, Catherine Aurousseau, Michel Le Moal, Pier Vincenzo Piazza, Djoher Nora Abrous * have equally contributed to the work

INSERM U259, University of Bordeaux, Domaine de Carreire, Bordeaux, France

For further information on this work, please contact Dr. Nora Abrous, INSERM U.588, Institut François Magendie, Rue Camille Saint-Saëns, 33077 Bordeaux Cedex, France. Tel: 33-5-57-57-36-86, Fax: 33-5-56-96-68-93, E-mail: nora.abrous@bordeaux.inserm.fr

Aimee Midei | EurekAlert!
Further information:
http://www.naturesj.com/mp/
http://www.nature.com/mp

More articles from Studies and Analyses:

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Oxygen loss in the coastal Baltic Sea is “unprecedentedly severe”
05.07.2018 | European Geosciences Union

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>