Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cell death promotes learning growth

27.11.2003


Background



The hippocampal formation has long been associated with the execution of higher-order cognitive functions, and impairment of this structure following severe stress and aging has been linked to cognitive disturbances. In order to understand the involvement of the hippocampal formation in the mediation of normal and pathological behaviors, much attention has recently been devoted to hippocampal neurogenesis. The dentate gyrus of the hippocampal formation has the ability to generate new neurons throughout the entire life. Surviving de novo produced cells develop into granule neurons and integrate into the functional circuitry. Neurogenesis has been proposed to play a role in hippocampal-mediated learning and has been implicated in the appearance of behavioral pathologies associated with the hippocampal formation.

Aim of the work


Although evidence suggest that neurogenesis play a role in spatial learning, the effect of learning on cell proliferation remains unclear. The authors generated and tested the hypothesis that different phases of spatial learning measured in the Morris water maze have distinct actions on cell proliferation. In this task, two phases of learning can be distinguished: an early phase during which performance improves rapidly, and a late phase during which asymptotic levels of performance are reached. These two phases seem to involve different brain processes and consequently may differentially influence neurogenesis.

Results

The authors demonstrated that the late phase of learning has a multifaceted effect on neurogenesis depending on the birth date of new neurons. The number of newly born cells increased contingently with the late phase and a large proportion of these cells survived for at least 4 weeks and differentiated into neurons. In contrast, the late phase learning decreased the number of newly born cells produced during the early phase. This learning-induced decrease in the number of newly generated cells results most probably from the death of the cells. Strikingly, cell death and not proliferation was positively correlated with performance in the water-maze. Thus, rats with the lowest cell death were less able to acquire and use spatial information than those with the highest cell death.

Conclusion

The results reveal a complex modulation of learning on brain plasticity, which induces death and proliferation of different populations of cells. Most importantly, they introduce the notion that removing neurons from the adult brain can be an important process in learning and memory and a novel mechanism through which neurogenesis may influence normal and pathological behaviors.


Citation source: Molecular Psychiatry 2003 Volume 8, number 12, pages 974-982.

AUTHORS: Matè Daniel Döbrössy*, Elodie Drapeau*, Catherine Aurousseau, Michel Le Moal, Pier Vincenzo Piazza, Djoher Nora Abrous * have equally contributed to the work

INSERM U259, University of Bordeaux, Domaine de Carreire, Bordeaux, France

For further information on this work, please contact Dr. Nora Abrous, INSERM U.588, Institut François Magendie, Rue Camille Saint-Saëns, 33077 Bordeaux Cedex, France. Tel: 33-5-57-57-36-86, Fax: 33-5-56-96-68-93, E-mail: nora.abrous@bordeaux.inserm.fr

Aimee Midei | EurekAlert!
Further information:
http://www.naturesj.com/mp/
http://www.nature.com/mp

More articles from Studies and Analyses:

nachricht Deep Brain Stimulation Provides Sustained Relief for Severe Depression
19.03.2019 | Universitätsklinikum Freiburg

nachricht AI study of risk factors in type 1 diabetes
06.03.2019 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>