Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research challenges prevailing theory of microbial biodiversity

25.07.2003


A new study led by researchers at the University of California, Berkeley, has found genetic differences in a sampling of a species of hot spring-loving microbes from around the world.



The findings, published by the journal Science, at the Science Express website, challenges the prevailing theory of microbial biodiversity.

It is well accepted in evolutionary science that species of animals and plants are more closely related when they are geographically near each other. When it comes to the tiny world of microbes, however, most scientists believe that different evolutionary rules apply.


"The current dogma has been that, for microbes, what determines diversity is not geographic distance but specific environments," said John Taylor, professor of plant and microbial biology at UC Berkeley’s College of Natural Resources and the head of the lab where the study was conducted. "The motto for microbes has been, ’Everything is everywhere, but the environment selects.’ "

To test this theory, Rachel Whitaker, a UC Berkeley graduate student in Taylor’s lab and lead author of the paper, trekked around the globe - by helicopter in some remote areas - to collect samples of a microbe called Sulfolobus islandicus, which thrives in the extreme environments of geothermal hot springs and volcanic vents. Sulfolobus microbes belong to the domain archaea - discovered in the 1970s - and can withstand highly acidic conditions and temperatures as high as 180 degrees Fahrenheit.

The samples were collected from the Mutnovsky Volcano and the Uzon Caldera-Geyser Valley region on the Kamchatka Peninsula in eastern Russia, the Lassen Volcanic and Yellowstone national parks in North America, and the volcanic region of western Iceland.

The researchers’ analysis also includes a large portion of previously collected Sulfolobus samples that were provided by co-author Dennis Grogan, associate professor of biological sciences at the University of Cincinnati.

In all, the researchers analyzed the DNA of 78 separate cultures of Sulfolobus islandicus and found small but significant levels of genetic differentiation among populations that live in different areas, despite the fact that they existed in similar ecological conditions.

"It makes sense that thermophiles cannot migrate over long distances since they are specifically adapted to life in the extremely hot acidic environments of a geothermal hot spring," said Whitaker. "It’s not too surprising that geographically isolated populations are evolving independently. This is predicted by population genetic theory but has never before been shown in microbial species."

Moreover, the study shows that genetic differences increased in direct correlation with geographic distance.

"If this type of geographic pattern occurs in other microbes, it means the microbial world is even more diverse than we had previously predicted, which is astounding," said Whitaker.

Taylor said the study has implications for how researchers view and treat microbes that emerge in different parts of the world.

"Many bacteria and fungi cause disease, and genetically different species may exhibit different behavior," said Taylor. "To treat diseases, researchers need to understand exactly which species they’re working with."

Scientists working on a pathogen that emerged in China, for example, cannot automatically assume that the same species of pathogen that emerged in the United States will behave the same way, the researchers said.

Sarah Yang | EurekAlert!
Further information:
http://www.berkeley.edu

More articles from Studies and Analyses:

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Oxygen loss in the coastal Baltic Sea is “unprecedentedly severe”
05.07.2018 | European Geosciences Union

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication

16.07.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>