Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study points to new gene therapy tool in preventing epileptic seizures

25.07.2003


A new study by gene therapy scientists at the University of North Carolina at Chapel Hill may lead to an effective long-term treatment for preventing seizures associated with a common form of epilepsy. The study appears this week in the Internet edition of the journal Nature Medicine and will appear in the Aug. 1 print edition of the journal. The research provides an important foundation for the development of new gene therapies to treat focal seizure disorders, the authors said.



As the name indicates, focal (or partial) seizures involve an electrical storm affecting only a part of the brain. Such seizures may remain localized or spread to other parts of the cerebral cortex. The temporal lobes, one on each side of the head just above the ears, are the brain sites of one of the most common forms of epilepsy involving focal seizures.

"Epilepsy afflicts approximately 1 percent of the U.S. population. A large proportion of epileptic adults have temporal lobe epilepsy, which is often very difficult to treat, and for about 30 percent of those individuals the only treatment option is surgery," said study co-author Dr. Thomas J. McCown, associate professor of psychiatry in UNC’s School of Medicine and a member of the UNC Gene Therapy Center. That option is surgical resection, or removal of abnormal brain tissue at the site linked to the seizures. However, despite resection, only 50 percent to 60 percent of temporal lobe epilepsy patients improve following the surgery.


In the new research, McCown and his Gene Therapy Center colleagues Rebecca Haberman, a post-doctoral fellow, and Dr. R. Jude Samulski, center director and professor of pharmacology, used a novel strategy to make laboratory rats less sensitive to experimentally induced focal seizures.

The researchers used an altered adeno-associated virus, or AAV, to deliver into the animals’ brain cells a coded sequence for the production of galanin, a neuroactive peptide known to suppress seizure activity.

In earlier studies, McCown and his team learned there would be no attenuation of seizure activity if galanin was produced within neurons and wasn’t secreted from the cells. In addition, brain cells would die following induced seizures. Moreover, these cells were in a brain area intimately involved in temporal lobe epilepsy, McCown said.

In the new research, the cargo delivered via AAV included coded instructions for galanin and a secretory sequence that caused the galanin to be non-specifically secreted from the cell. In one experiment, sensitivity to focal seizure was reduced significantly. In another model seizure experiment, the AAV "construct" was delivered to only one side of the brain. Cell death after seizure induction occurred only in the untreated area.

"The treated side looked normal," McCown said. "This suggests that we can secrete an active peptide in a brain structure that’s closely tied to temporal lobe seizures."

Gene expression following delivery the AAV construct can be turned off by the antibiotic doxycycline, which McCown said was an important feature of the research. "Whether it be via an antimicrobial compound or an analog, this is an absolutely crucial component to human gene therapy. You have to be able to turn gene expression off."

In terms of focal seizure control through gene therapy, the new study brings researchers a step closer to resolving a major issue: how to influence only a specific area of the brain. "In the case of seizures, the area is much more restrictive than that of a single-gene disorder where you need to hit most of the cells in a large proportion of the brain," McCown said.

Further laboratory studies with this new gene therapy platform may prove promising for treatment of temporal lobe epilepsy patients who are slated for surgery, McCown said. "You could put in this AAV vector prior to surgery and then see what effect it has on the tissue to be removed. If it controls seizure activity, you might have to reconsider resection."

Contact: Mc Cown at +1-919-966-3081, thomas_mccown@med.unc.edu

Leslie Lang | EurekAlert!
Further information:
http://www.med.unc.edu

More articles from Studies and Analyses:

nachricht Researchers simplify tiny structures' construction drip by drip
12.11.2018 | Princeton University, Engineering School

nachricht Mandibular movement monitoring may help improve oral sleep apnea devices
06.11.2018 | Elsevier

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>