Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find way to improve musical performance

24.07.2003


Researchers from Imperial College London and Charing Cross Hospital have discovered a way to help musicians improve their musical performances by an average of up to 17 per cent, equivalent to an improvement of one grade or class of honours.



The research published in this months edition of Neuroreport, shows that using a process known as neurofeedback, students at London’s Royal College of Music were able to improve their performance across a number of areas including their musical understanding and imagination, and their communication with the audience.

Dr. Tobias Egner, from Imperial College London at Charing Cross Hospital, one of the authors of the study, comments: "This is a unique use of neurofeedback. It has been used for helping with a number of conditions such as attention deficit disorder and epilepsy, but this is the first time it has been used to improve a complex set of skills such as musical performance in healthy students."


Two experiments were conducted involving a total of 97 students. In both experiments, the students were assessed on two pieces of music, both before and after the neurofeedback training, according to a 10-point scale adapted from a standard set of music performance evaluation criteria of the Associated Board of the Royal Schools of Music, by a panel of expert judges. The judges evaluated video-recorded performances, and were unaware of whether the performance had been given before or after the intervention.

Neurofeedback monitors brain activity through sensors attached to the scalp which filter out the brainwaves. These filtered brainwaves are then ’fed back’ to the individual in the form of a video game displayed on screen, and the participant learns to control the game by altering particular aspects of their brain activity. This alteration in brain activity can influence cognitive performance.

In the first experiment, 22 students out of 36 were trained on two neurofeedback protocols (SMR and beta1), commonly used as tools for the enhancement of attention, and, following this, on a deep relaxation alpha/theta (a/t) protocol. In addition a second group of 12 was engaged in a regime of weekly physical exercise and a "mental skills training" programme derived from applications in sports psychology. A third group consisted of a scholastic grade and age matched no-training group, which served as a control grade.

In the second experiment, a different cohort of students were randomly allocated to one of six training groups: alpha/theta neurofeedback, beta1 neurofeedback, SMR neurofeedback, physical exercise, mental skills training, or a group that engaged in Alexander Technique training.

All of the students who received neurofeedback training were found to have improved their performances marginally compared with those who received other forms of training, but those who had received the alpha/theta (a/t) protocol improved their performance the most. The range of improvement in performance for the alpha/theta group was between 13.5 per cent and 17 per cent.

Professor John Gruzelier, from Imperial College London at Charing Cross Hospital, and senior author of the study, adds: "These results show that neurofeedback can have a marked effect on musical performance. The alpha/theta training protocol has found promising applications as a complementary therapeutic tool in post-traumatic stress disorder and alcoholism. While it has a role in stress reduction by reducing the level of stage fright, the magnitude and range of beneficial effects on artistic aspects of performance have wider implications than alleviating stress".

Tony Stephenson | EurekAlert!
Further information:
http://www.imperial.ac.uk

More articles from Studies and Analyses:

nachricht TU Dresden biologists examine sperm quality on the basis of their metabolism
29.11.2019 | Technische Universität Dresden

nachricht Approaching the perception of touch in the brain
27.11.2019 | Max Planck Institute for Human Cognitive and Brain Sciences

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing a digital twin

University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...

Im Focus: The coldest reaction

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

Im Focus: McMaster researcher warns plastic pollution in Great Lakes growing concern to ecosystem

Research from a leading international expert on the health of the Great Lakes suggests that the growing intensity and scale of pollution from plastics poses serious risks to human health and will continue to have profound consequences on the ecosystem.

In an article published this month in the Journal of Waste Resources and Recycling, Gail Krantzberg, a professor in the Booth School of Engineering Practice...

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Solving the mystery of carbon on ocean floor

06.12.2019 | Earth Sciences

Chip-based optical sensor detects cancer biomarker in urine

06.12.2019 | Life Sciences

A platform for stable quantum computing, a playground for exotic physics

06.12.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>