Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research shows EU how to hit Kyoto target

23.07.2003


High temperature superconductor (HTS) devices could help the EU reduce its CO2 emissions by up to 52 million tonnes, equivalent to 65 per cent of its Kyoto Protocol commitment.



Teemu Hartikainen, Jorma Lehtonen and Risto Mikkonen from Tampere University of Technology, Finland have worked out how much European GHG emissions would be reduced if these devices were introduced. Their findings are published today (23 July) in the Institute of Physics journal Superconductor Science and Technology.

Using HTS in motors improves their efficiency so machines use up less electrical energy, thus reducing the GHG emissions from electricity production. HTS devices can approximately halve power losses, as superconducting materials – unlike conventional devices – have practically no resistance, which is the property which causes energy to be wasted as excess heat. However, superconductors need to be kept cold so use up energy in refrigeration.


Risto Mikkonen and his team wanted to find out the efficiency level and power range that would be necessary for HTS devices to be competitive against conventional devices. Energy production is the biggest source of GHG emissions, so they focussed on this. They studied what would happen to GHS emissions from the Finnish electric power grid if all the existing conventional transformers, generators and synchronous motors (which deliver large amounts of steady power) in Finland were replaced by HTS ones, taking into consideration the production and consumption of electricity.

“To find out how competitive superconducting devices would be, we worked out their break-even power, using generally accepted economical and technological estimates, and carried out our GHG emission analysis,” says Teemu Hartikainen.

The break-even power is the minimum power needed for the devices to become commercially viable. Working at their calculated break-even power for HTS devices on the Finnish electric power grid, emissions could go down by the equivalent of 0.8 to 1.55 million tonnes of CO2 per year – which is one to two per cent of Finland’s total GHG emissions. Expanding the results to the whole of the EU, the reduction would be equivalent of 27 to 53 million tonnes of CO2, which is 33 to 65 per cent of the EU’s Kyoto commitment (to reduce GHG emissions by eight per cent from 1990 levels between 2008 and 2012).

The team used a market penetration model based on the write-off rate of present machinery, and calculated that it would take at least 20 years to achieve just half of this reduction potential. HTS devices are promising not only for environmental reasons but also are commercially attractive. Compared to their conventional counterparts, they are less sensitive to load variations, they are more stable, smaller, lighter and less noisy. These features would be especially useful for moving systems, like those on boats, trains or aeroplanes.

“Our results will interest device manufactures who are constantly seeking new developments in the electric power sector,” said the head of superconductivity unit at Tampere University of Technology, Risto Mikkonen. “Superconducting devices could help the EU reduce its emissions of greenhouse gases. Although it will take some time to introduce this new technology, the environmental benefits could accelerate its commercialisation.”

Michelle Cain | Institute of Physics
Further information:
http://www.iop.org/EJ/sust

More articles from Studies and Analyses:

nachricht ECG procedure indicates whether an implantable defibrillator will extend a patient's life
02.09.2019 | Technische Universität München

nachricht Fracking prompts global spike in atmospheric methane
14.08.2019 | European Geosciences Union

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

Im Focus: The working of a molecular string phone

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Potsdam (both in Germany) and the University of Toronto (Canada) have pieced together a detailed time-lapse movie revealing all the major steps during the catalytic cycle of an enzyme. Surprisingly, the communication between the protein units is accomplished via a water-network akin to a string telephone. This communication is aligned with a ‘breathing’ motion, that is the expansion and contraction of the protein.

This time-lapse sequence of structures reveals dynamic motions as a fundamental element in the molecular foundations of biology.

Im Focus: Milestones on the Way to the Nuclear Clock

Two research teams have succeeded simultaneously in measuring the long-sought Thorium nuclear transition, which enables extremely precise nuclear clocks. TU Wien (Vienna) is part of both teams.

If you want to build the most accurate clock in the world, you need something that "ticks" very fast and extremely precise. In an atomic clock, electrons are...

Im Focus: Graphene sets the stage for the next generation of THz astronomy detectors

Researchers from Chalmers University of Technology have demonstrated a detector made from graphene that could revolutionize the sensors used in next-generation space telescopes. The findings were recently published in the scientific journal Nature Astronomy.

Beyond superconductors, there are few materials that can fulfill the requirements needed for making ultra-sensitive and fast terahertz (THz) detectors for...

Im Focus: Physicists from Stuttgart prove the existence of a supersolid state of matte

A supersolid is a state of matter that can be described in simplified terms as being solid and liquid at the same time. In recent years, extensive efforts have been devoted to the detection of this exotic quantum matter. A research team led by Tilman Pfau and Tim Langen at the 5th Institute of Physics of the University of Stuttgart has succeeded in proving experimentally that the long-sought supersolid state of matter exists. The researchers report their results in Nature magazine.

In our everyday lives, we are familiar with matter existing in three different states: solid, liquid, or gas. However, if matter is cooled down to extremely...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

AI for Laser Technology Conference: optimizing the use of lasers with artificial intelligence

29.08.2019 | Event News

 
Latest News

Too much of a good thing: overactive immune cells trigger inflammation

16.09.2019 | Life Sciences

Scientists create a nanomaterial that is both twisted and untwisted at the same time

16.09.2019 | Materials Sciences

Researchers have identified areas of the retina that change in mild Alzheimer's disease

16.09.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>