Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technique for sorting sperm could improve fertility treatment

09.07.2003


U-M researchers report more effective method for separating viable sperm



A new technique to find the viable sperm in the semen of men with low sperm motility could lead to a new approach for infertility treatment, according to University of Michigan Health System researchers.

In a study published online and in the July/August issue of Reproductive BioMedicine Online (http://www.rbmonline.com), UMHS researchers used a microscopic chip divided into two channels to encourage viable, healthy sperm to separate from dead and immature sperm, in order to maximize the potential chances of fertilizing an egg. The research focused on separating the sperm and did not attempt fertilization.


"Current methods of isolating sperm for in vitro fertilization work, but not perfectly," says study author Gary D. Smith, Ph.D., associate professor of Obstetrics and Gynecology at the U-M Medical School and director of the Assisted Reproductive Technologies Laboratory.

"One method for separating sperm is centrifugation, which requires spinning the sample at high speeds. Yet, when this is done, live sperm are pelleted with dead sperm that release substances like free oxygen radicals that can damage the good sperm. That’s a drawback to the current method. This new alternative has the potential to be a good way of getting motile sperm away from dead sperm without causing any damage."

Smith and colleagues are encouraged by their recent finding, yet note that it will take several years of development before their approach can be used efficiently and safely in a clinical setting.

The new method involves microfluidics, a new area of biomedical engineering that deals with the microscopic flow of fluids. It’s currently used in applications such as gene sequencing and sorting cell cultures.

In this case, a device about the size of a penny was built with two channels that flowed together into parallel streams and eventually diverged. Sperm were sent through one channel and a saline solution through another channel. When the channels met, the motile, or healthy, sperm were able to cross over to the other stream and exit through the second channel, while the nonmotile sperm stayed their course through the first channel.

"Everything is pushed downstream because of fluid flow being generated by gravity and surface tension. The motile sperm exit a different outlet than non-motile components because motile sperm can swim and cross streamlines," says study co-author Shuichi Takayama, Ph.D., assistant professor of Biomedical Engineering and Macromolecular Science and Engineering at U-M.

Before passing through the device, only 44 percent of the initial sample was motile sperm. After the sperm passed through the flow channels, motile sperm increased to 98 percent. In addition, the sorted samples had twice as many sperm with normal structure and form compared to the unsorted samples. Testing was also done to ensure the substances used in the chip did not affect sperm viability or quality.

About 40 percent of infertility problems are with the male, including low motility. In borderline cases, traditional fertility treatments are highly effective. It’s the men with extremely low sperm numbers who could most benefit from the microfluidic sperm sorting.

In theory only one sperm is needed to fertilize one egg, which means specialists need only isolate a small number of sperm.

"The problem is if there were 10 good sperm in an ejaculate, along with dead sperm, immature sperm and other debris, how do you get those viable sperm? You end up painstakingly searching through the sample for sperm," Smith says. In one patient with very low sperm levels, Smith recalls looking through a sample for six to seven hours to find the motile sperm.

Another advantage to this new sorting technique is that it can be done repeatedly without damaging viable sperm. Using current sorting methods, a significant number of viable sperm are lost. This creates a challenge when samples with extremely low sperm levels do not yield enough viable sperm after sorting. With the microfluidic process, it’s simple to take the remaining sample and send it through the sorter another time.

But men with low motility aren’t the only potential benefactors of this new technique. Smith sees broader implications for a whole new method of treating infertility – a practice that hasn’t changed much since the initial "test tube babies."

"It has potential to provide a solution to a specific problem, but maybe more importantly it could represent a new integrated system where microfluidics is used to sort sperm, and divert those sorted sperm to eggs. Potentially, we could create something that sorts sperm, inseminates eggs and grows embryo all within a device the size of a stamp," Smith says. "Maybe more importantly these microfluidic devices have the potential of more closely recreating the environment of the female oviduct, the site of in vivo fertilization and early embryo development."

Microfluidics has only recently been applied to assisted reproduction. Other studies have looked at its use with eggs and embryos, but this study is the first to show its use in separating sperm.

Before any of this can be applied in a clinical setting, more tests must be conducted. Current studies are looking at improving the device design and applying this technique to a broader range of assisted reproductive technologies.


In addition to Smith and Takayama, the study authors include U-M researchers Timothy Schuster from Urology, Laura Keller from Obstetrics and Gynecology, and Brenda Cho from Biomedical Engineering.

Nicole Fawcett | EurekAlert!
Further information:
http://www.med.umich.edu/1toolbar/whatsnew.htm
http://www.rbmonline.com

More articles from Studies and Analyses:

nachricht How to design city streets more fairly
18.05.2020 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

nachricht Insects: Largest study to date confirms declines on land, but finds recoveries in freshwater – Highly variable trends
24.04.2020 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Black nitrogen: Bayreuth researchers discover new high-pressure material and solve a puzzle of the periodic table

29.05.2020 | Materials Sciences

Argonne researchers create active material out of microscopic spinning particles

29.05.2020 | Materials Sciences

Smart windows that self-illuminate on rainy days

29.05.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>